A SIMULATION TOOLKIT

Book For Application Developers
Release 11.0

Geant4 Collaboration

Rev6.0 - December 10th, 2021

1 Introduction

1.1

2.1

22

2.3

24

2.5

2.6

2.7

How touse thismanual

Getting Started with Geant4 - Running a Simple Example

How to Define the main() Program
2.1.1 ASamplemain () Method
2.1.2 GARUNMANAGET + v v v v v v e e e e e e e e e e
2.1.3 User Initialization and Action Classes
2.1.4 G4UImanager and Ul CommandSubmission
2.1.5 GdcoutandG4cerro
How to Define a Detector Geometry
221 BasicConceptst
22.2 CreateaSimple Volume
223 ChooseaSolid,
224 Create aLogical Volume
225 PlaceaVolume
2.2.6 Create a Physical Volume
2.2.7 Coordinate Systems and Rotations
How to Specify Materials in the Detector
2.3.1 General Considerations
2.3.2 Define a Simple Material
233 DefineaMolecule.
234 Define a Mixture by Fractional Mass
2.3.5 Define a Material from the GEANT4 Material Database

2.3.6 Define a Material from the Base Material
2.3.7 Print Material Information 0. ..
2.3.8 Access to GEANT4 material database
How to Specify Particles L.
24.1 Particle Definition Lo
242 RangeCuts i
How to Specify Physics Processes
2.5.1 PhysicsProcesses o e
2.5.2 Managing Processes oL 0oL
2.5.3 Specifying Physics Processes
How to Generate a Primary Event
2.6.1 Generating Primary Events
2.6.2 G4VPrimaryGenerator i e
GEANT4 General Particle Source
27.1 Introduction
2.7.2 Configuration e

CONTENTS

W W

O O 00 3 O\ L Lt n

.............. 12

.............. 18

2.7.3 MacroCommands e e e e e e e 27

274 Example Macro File e e 32
2.8 How to Make an Executable Program e 33
2.8.1 Using CMake to Build Applications 33
2.8.2 Useof Geant4Config.cmake with find_packageinCMake 41
2.9 How to Set Up an Interactive Session it 43
29.1 Introduction o e e e e e e e e e e e e 43
2.9.2 A Short Description of Available Interfaces 43
2.9.3 How to Select Interface in Your Applications 45
2.10 HowtoExecuteaProgram L 46
2.10.1 Introduction o i e e e e e e e 46
2.10.2 ‘Hard-coded’ BatchMode 47
2.103 BatchModewithMacroFile 47
2.10.4 Interactive Mode Driven by Command Lines 48
2.10.5 General Case L. e e e e e e e 50
2.11 How to Visualize the Detectorand Events, 52
2.11.1 Introduction 52
2.11.2 Visualization Drivers L e e e 52
2.11.3 How to Incorporate Visualization Drivers into an Executable 52
2.11.4 Writing the main () Method to Include Visualization. 53
2.11.5 Sample Visualization Sessionso o i e 54
2.11.6 For More Information on GEANT4 Visualization. 54
Toolkit Fundamentals 55
3.1 Class Categories and Domains e 55
3.1.1 Whatisaclass category? i e e e e e e e e e 55
3.1.2 Class categories in GEANT4 0 i i i i e e e e e e e e e e e 55
3.2 Global Usage Classes v v v v v i it e e e e e e e e e e e e e e e e e e 57
3.2.1 Signature of GEANT4A Classes o e 57
3.2.2 The HEPRandom modulein CLHEP 58
3.2.3 The HEPNumericsmodule e 61
3.2.4 General management Classes it e e e e e e e e e e e e e 61
3.3 Systemof units e e e e e e e e e e e e e e e 63
33,1 BasiCunits e e e e e e 63
332 Inputyourdata e 63
333 Outputyourdata L. e e e e 64
334 Introduce new units e 64
3.3.5 Printthelistofunits e 65
34 RUN . . oL e 65
34.1 Basicconceptof Rum o e e 65
342 GEANT4asastatemachine 67
343 User'shook forstatechange 68
3.4.4 Customizing the Run Manager i e 68
345 Managing workerthread L e 70
35 Event e 71
3.5.1 Representation of aneventl o e e 71
3.5.2 Structure of anevent L. Lo e e e e e e e e 71
3.5.3 Mandates of GAEVENtManager v v v v v it e e e e e e e e e e e e e e e 71
3.5.4 Stacking mechanism e e e e 71
3.6 Event Generator Interface 72
3.6.1 Structure of a primary event oL e e e e e e e e 72
3.6.2 Interface to a primary generator e e e e e e e e 73
3.6.3 Eventoverlap using multiple generators o0 75
3.7 Event Biasing Techniques e e e e e e 75

3.7.1 Scoring, Geometrical Importance Sampling and Weight Roulette 75

3.7.2 Physics Based Biasing e e e 83

373 Adjoint/Reverse Monte Carlo e 86

374 GenericBiasing L e 91

4 Detector Definition and Response 99
41 GEOMELTY . . . v v vt e 99
4.1.1 Introduction oL e e e e e e e e 99

4.1.2 Solids e 99

4.1.3 Logical Volumes e e e e 123

4.1.4 Physical Volumes o o e e e e e e e e e e e 125

4.1.5 Touchables: Uniquely Identifyinga Volume 137

4.1.6 Creating an Assembly of Volumes L .. 138

4.1.7 Reflecting Hierarchies of Volumes 141

4.1.8 The Geometry Navigator ot v ittt e e e e e 144

4.1.9 Converting Geometries from Geant3.21, 150
4.1.10 Detecting Overlapping Volumes i i ittt 151
4.1.11 Dynamic Geometry SEtups it e e e e e e 155
4.1.12 Importing XML Models Using GDML, 156
4.1.13 Importing ASCII Text Models i i e e 157
4.1.14 Saving geometry tree objects in binary formato Lo 157

42 Material L e e e e e 157
4.2.1 General considerations oo e e e e 157

422 Introductiontothe Classes o o i i i i i e e 157

4.2.3 Recipes for Building Elements and Materials 159

424 TheTables. o o o e e e 162

4.3 Electromagnetic Field e e e e 162
43.1 AnOverview of PropagationinaField 162

432 Practical ASPECES e e e e e e e e e e 165

433 SpinTracking e e 176

4.4 HItS .« . . L e e 177
441 Hit . ..o e e e 177

442 Sensitive detector L e e e e e e e 181

443 GASDMaANager v o vt e e e e e e e e e e 182

444 G4MultiFunctionalDetector and G4VPrimitiveScorer 182

445 Concrete classes of GAVPrimitiveScorer 186

44.6 G4VSDFilteranditsderivedclasses 187

4.477 Multiple sensitive detectors associated to a single logical-volume 188

448 ULHHES o o oo e e e e e e e e 188

45 DIgitizationo e e e e e e e e e 189
451 Digi . .o e 189

452 Digitizermodule e 190

4.6 BirksQuenching L e e e e e e e e 191
477 Object Persistency o o v i e e e e e e e e e e e e e e 192
4.7.1 Persistency in GEANT4 oL e e 192

4.7.2 Using Root-1/0 for persistency of GEANT4 objects 192

4.8 Parallel Geometries e e e e e e 193
48.1 Awparallelworld o e e e e e e e 193

4.8.2 Definingaparallel world 193

4.8.3 Layered mass EOMEIry v vttt i e e e e e e e e 195

4.9 Command-based sCOring 196
4.9.1 Introduction e e e e 196

4.9.2 Defining a scoring volume in the trackingworld 0oL, 196

493 Definingascoringmesh L e e e 197

494 Defining ascoring probe e e e e e e e e e e e e 197

4.9.5 Defining primitive scorers to a scoring volume 198

49.6 Drawingscores forascoringmesh L Lo 199

4.9.7 Writingscorestoafile L. L 199

49.8 Filling I-D histogram e e 199

4.9.9 List of available primitive SCOTers o o v v v v vt e 200

5 Tracking and Physics 203
5.1 Tracking o oL e 203
5.0.1 0 BasicConcepts . . . v v v v i i e 203

5.1.2 Access to Track and Step Information 204

5.1.3 Handling of Secondary Particles e 206

5.1/4 User ACHONS . . . v v v vt e e e e e e e e e e e e e e e e e e 206

5.5 Verbose Outputs o oo i L e e e e e e e e e e e 206

5.1.6 Trajectory and Trajectory Point L 207

5.2 PhysSics Processes v v v i i e e e e e e e e e e e e e e e 208
52,1 OVEIVIEW . . . v vt e e e e e e e e 208

5.2.2 Electromagnetic Interactions Lo e 210

5.2.3 Hadronic Interactions Lo e e e e e e e e 227

524 Particle Decay Process 237

5.2.5 Gamma-nuclear and Lepto-nuclear Processes 239

5.2.6 Optical Photon Processes i i e e e e e e e 240

5.277 Parameterisationo e e e e e e e 262

5.2.8 Transportation Process L e 269

5.3 Particles oL 270
53,1 BaSICCONCEPLS o & v v v v e 270

5.3.2 Definitionof aparticle L e e e 270

5.33 Dynamicparticle e e e e e e e e e 273

5.4 Production Threshold versus Tracking Cut 274
5.4.1 General considerations Lol e e e e e e e e e 274

5.4.2 Set production threshold (SetCut methods) 275

543 Applycut . ..o e e e e e e e e 275

5.4.4 Why produce secondaries below threshold in some processes? 275

5.4.5 Cutsin stopping range or in €nergy? oo it e e 276

546 Summary .. o.o.o. L. e e 276

547 Special tracking cuts L. e 276

5.5 CutsperRegion e e e e e e 277
5.5.1 General Concepts v v i i e e e e e e e e e e e e e e e e e e 277

5.5.2 DefaultRegion e 278

5.5.3 Assigning Production CutstoaRegion oo L 278

5.6 PhysicsTable e 278
5.6.1 General Concepts v v v v i e e e e e e e e e e e e e e e e e 278

5.6.2 Material-Cuts Couple o o e e e e e e e e e e e 279

5.6.3 File /O forthe Physics Table e 279

5.6.4 Building the Physics Table 279

5.7 UserLImits o o o o e e e e e e e e e e 280
57.1 General CONCeptS o v v v it e e e e e e e e e e e e e e e 280

5.7.2 Processes co-working with G4UserLimits 280

5.8 Track Error Propagation e e e e e e 281
5.8.1 PhySIiCS . . . v e e e e e e e 281

5.82 Trajectory state e e e e e 281

5.8.3 Trajectory State error L. . e e e e e e e e e e e e e e e 283

5.84 Targets e 283

5.8.5 Managing the track propagation o e e e 284

5.8.6 Limiting the step o i e e e e e e e e e e e e e e
5.9 Exotic PhysiCS o e e e e e
5.9.1 PhySIiCS . . o v e e e e e e e
5.92 Material e e e e e e e e
593 Geometry e
User Actions
6.1 User ACHONS o v it e e e e e e e e e e e e e e
6.2 Mandatory User Actions and Initializations
6.2.1 G4VUserDetectorConstruction o v i vt vt ittt i et e e
6.2.2 Physics LiSts o o e e e e e e e e e e e e e
6.2.3 User Action Initialization L. e
6.3 Optional User ACHONS ittt e e e e e
6.3.1 Usageof User ACtIONS i i i it e et e e e e e e
6.3.2 Killing Tracks in User Actions and Energy Conservation
6.4 User Information Classes o i i i e e e
6.4.1 G4VUserEventInformation e
6.42 G4VUserTrackInformation 0 o it e e e
6.43 G4VUserPrimaryVertexInformation and G4V UserPrimaryTrackInformation
6.44 G4VUserRegionInformation L e
6.5 Multiple User ACHONS . . . v v v v v e
6.5.1 EXCEPHONS i e e e e e e e e e e e e
Control
7.1 Built-in Commands e e e e
7.2 User Interface - Defining New Commands vt i
7.2.1 GAUIMESSENZEr . . .« . v v v v e e it e e e e e e e e e e e e e
7.2.2 G4Ulcommand and its derived classes oL oo
7.2.3 Anexample MESSENZEr i i i e e e e e e e e e e e e e e
7.2.4 How to control the output of Gdcout/Gdcerr o v i vt
Visualization
8.1 Introduction to Visualization L e e e
8.1.1 WhatCanbe Visualized e
8.1.2 You have a Choice of Visualization Drivers
8.1.3 Choose the Driver that Meets Your Needs
8.1.4 Controlling Visualization 0 e e e e e
8.1.5 Visualization Details L
8.2 Adding Visualization to Your Executable e
8.2.1 Installing Visualization Drivers
8.2.2 How to Realize Visualization Drivers in an Executable
8.2.3 If you do wish to write your own subclass... o oL
824 Bydefault...
8.2.5 Optionally... e e
8.2.6 Visualization Manager e e e e e e
8277 Howto Writethemain () Function
8.3 The Visualization Drivers o e e e e e e e e e
8.3.1 Availability of drivers on the supported systems
83.2 OpenGL e e
833 Qt . e
83.4 OpenInventor i e e e e e e e e e e e
8.3.5 OpenInventor Extended Viewer
8.3.6 OpenlInventor Qt Viewer i i e e e e
837 Q3D ..

289
289
289
289
290
293
294
295
298
298
298
299
299
299
300
301

303
303
303
303
304
308
311

313
313
313
314
315
316
316
317
317
317
317
318
318
318
318
319
320
320
321
322
322
322
324

8.4

8.5

8.6

8.7

83.8 ToolsSG e e 324
839 VHk . .. e 326
8.3.10 HepRepFile e e 326
83.11 DAWN . . o 327
83.12 VRML. . . . e 328
8.3.13 RayTracer e e 328
8.3.14 gMOCIen o o e e e e e e e e e e e e e 329
8.3.15 Visualization of detector geometry tree v v v v vt e e e e e 330
Controlling Visualization from Commands 331
8.4.1 Scene, scene handler, and viewer L 331
8.4.2 Create a scene handler and a viewer: /vis/opencommand 332
8.4.3 Create an empty scene: /vis/scene/createcommand 333
8.4.4 Visualization of a physical volume: /vis/drawVolume command. 333
8.4.5 Visualization of a logical volume: /vis/drawLogicalVolume command 333
8.4.6 Visualization of trajectories: /vis/scene/add/trajectoriescommand 334
8.4.7 Visualization of hits: /vis/scene/add/hitscommand 335
8.4.8 Visualization of fields: /vis/scene/add/magneticFieldcommand 335
8.4.9 Visualizationof Scored Data e 336
8.4.10 Additional attributes for Hits 336
8.4.11 Visualization of histograms (plotting) 336
8.4.12 Basic camera workings: /vis/viewer/commands 340
8.4.13 Declare the end of visualization for flushing: /vis/viewer/flush command 342
8.4.14 End of Event Action and End of Run Action: /vis/scene/endOfEventAction and
/vis/scene/endOfRunActioncommands, 342
8.4.15 HepRep Attributes for Trajectorieso e 343
84.16 HOWtoSaVe A VIEW. o v it et e e e e e e e e e e e e e e 343
8.4.17 Howtosaveaviewtoanimagefile 343
8418 Culling o o e 345
8419 Cutview o ot e e e e 345
8.4.20 Multithreading commandso oL e 346
Controlling Visualization from Compiled Code 346
8.5.1 G4VVisManager e e e e 347
8.5.2 Visualization of detector COmMponents o vt v it 347
8.5.3 Visualization of trajectoriest e e e e e e e e e e 348
8.5.4 Enhanced trajectory drawingo L e e e e e e e e e 348
8.5.5 HepRep Attributes for Trajectories e 348
8.5.6 Visualizationof hits 349
8.5.7 HepRep Attributes for Hits 351
8.5.8 Visualization of teXt e e e e e 351
8.5.9 Visualization of polylines and tracking steps 351
8.5.10 Visualization User Actions i it 353
8.5.11 Standalone Visualization e 354
8.5.12 Drawingasolidasacloudofpoints 354
Visualization Attributes e 355
8.6.1 Visibility e e 356
8.62 Colour. e e 356
8.6.3 Forcingattributes L e 358
8.6.4 Otherattributes e e e 359
8.6.5 Constructors of G4VisAttributes 360
8.6.6 How to assign G4VisAttributes to a logical volume 360
8.6.7 Additional User-Defined Attributes 361
Enhanced Trajectory Drawing e 362
8.7.1 Default Configuration e 362
8.7.2 Trajectory Drawing Models e 362

vi

9

8.7.3 Controlling from Commands i e e e
8.7.4 Controlling from CompiledCode e
8.7.5 Drawingby time o . i e e e e e e e e e
8.8 Trajectory Filtering L e
8.8.1 Controlling from Commands
8.8.2 Examplecommands. e
8.8.3 Hitand Digi Filtering e e e e e
8.9 Polylines, Markers and Text e e e e e e e
8.9.1 Polylines e e e e e e
8.9.2 Markers e e e e e
8.9.3 Text e e e e e
8.10 Makinga Movie o vt e e e e e e e e e e e e
8.10.1 Using /vis/viewer/interpolate
8.10.2 Withamacroloop e
8.10.3 Processing picture files with mpeg2encode
8104 Qt . o o
8.10.5 DAWNEFILE e e e
8.10.6 RayTracerX o o e e e e e e e e e
8.11 Debugging geometry with viso L
8.11.1 Usingadvanced viStools e
Analysis
0.1 Introduction e e e e
9.2 Analysis Manager Classes i e
9.2.1 AnalysisManager e e e e e e e e e e
9.22 Fileshandling e
0.2.3 HiStOZrams v v i i e
924 Profiles e
9.25 Plotting e
9.2.6 Ntuples e
9.2.77 Parallel Processing e
9.2.8 Coexistence of Several Managers v v v v it e e e e e
9.2.9 Supported Features and Limitations
9.3 AnalysisReader Classes i e
9.3.1 AnalysisReader Lo
9.3.2 Filehandling
9.3.3 Histogramsand Profiles e e
034 Ntuples e e e e e
9.4 Accumulables e
9.4.1 G4Accumulable<T> L e e
9.4.2 Userdefined accumulables
0.5 g4tools e e
9.5.1 gdtoolspackage e e e e e e e e e
952 User APL e e
10 Examples
10.1 Introduction e e
10.2 Basic Examples e e
10.2.1 Basic Examples Summary oL e
10.2.2 Basic Examples Macros e e e
10.2.3 Multi-threading e e e
10.2.4 Example Bl o o e e e e e e e e
10.2.5 Example B2 o e e e e e e e
10.2.6 Example B3 e e

381
381
381
382
383
385
390
393
394
396
397
398
398
399
399
399
400
401
401
402
403
404
405

407
407
407
407
410
411
412
412
413

vii

10.2.7 Example B4 e e e e e e e e 414

10.2.8 Example BS o L e e e e e e e e e 416

10.3 Extended Examples L 417
1031 Analysis o oL 418
10.3.2 BIasing o oo e e e e e e e e e e 418
1033 CommoOn v e e e e e e e e e 418
10.3.4 ElectromagnetiC v v v v v e i e 418

10.3.5 Error Propagation e e e e e e e e e e 419
103.6 EventGenerator i e e e e e e e e e 419
10.3.7 Exotic Physics e 420
10.3.8 Fields o o e e e 420
1039 Geant3to Geantd 420
10.3.10 GEOMELTY . . . o o v v o e 420
103.11 Hadronic e e e 420
10.3.12 Medical Applications o i i e e e e e e e e e e e 421
10.3.13 Optical Photons e 422
10.3.14 Parallel Computing o it e e e e e e e e 422
10.3.15 Parameterisationso e e 422
10.3.16 PersiStency v v v v i e 430
10.3.17 Physics lists L e e 430
10.3.18 Polarisation e e e e 430
10.3.19 Radioactive Decay o e 431
10320 Run & Event o e e e e 431
10.3.21 Visualization e e e e e e e e 431

10.4 Advanced Examples 431
10.5 Novice Examples oL e 433
11 Appendix 435
11.1 PythonlInterface e 435
11.1.1 Using GeantdPy L e e 435
11.1.2 Developing GeantdPy L 436

11.2 GEANT4 Material Database e e 436
11.2.1 Simple Materials (Elements) i i e e e e 436
1122 NISTCompounds oo e e e 438

11.2.3 HEPand Nuclear Materials i i e 450
11.2.4 Space (ISS) Materials o e e 451

11.2.5 Bio-Chemical Materials e 451

11.3 Transportation in Magnetic Field - Further Details 453
11.3.1 The challenge of integrating all tracks 453
11.3.2 Using preset thresholds for killing loopers 454
11.3.3 Fine grained control of the parameters for killing looping particles 455
Bibliography 459

viii

Book For Application Developers, Release 11.0

Scope of this manual

The User’s Guide for Application Developers is the first manual the reader should consult when learning about
GEANT4 or developing a GEANT4 -based detector simulation program. This manual is designed to:

* introduce the first-time user to the GEANT4 object-oriented detector simulation toolkit,

* provide a description of the available tools and how to use them, and

* supply the practical information required to develop and run simulation applications which may be used in real
experiments.

This manual is intended to be an overview of the toolkit, rather than an exhaustive treatment of it. Related physics
discussions are not included unless required for the description of a particular tool. Detailed discussions of the physics
included in GEANT4 can be found in the Physics Reference Manual. Details of the design and functionality of the
GEANT4 classes can be found in the User’s Guide for Toolkit Developers.

GEANT4 is a detector simulation toolkit written in the C++ language. The reader is assumed to have a basic knowl-
edge of object-oriented programming using C++. Although GEANT4 is a fairly complicated software system, only a
relatively small part of it needs to be understood in order to begin developing detector simulation applications. An
understanding of radiation physics and associated processes is beneficial.

CONTENTS 1

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/index.html

Book For Application Developers, Release 11.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 How to use this manual

A very basic introduction to GEANT4 is presented in Section Getting Started with Geant4 - Running a Simple Example.
It is a recipe for writing and running a simple GEANT4 application program. New users of GEANT4 should read this
chapter first. It is strongly recommended that this chapter be read in conjunction with a GEANT4 system installed and
running on your computer. It is helpful to run the provided examples as they are discussed in the manual. To install
the GEANT4 system on your computer, please refer to the Installation Guide for Setting up Geant4 in Your Computing
Environment.

Section Toolkit Fundamentals discusses general GEANT4 issues such as class categories and the physical units system.
It goes on to discuss runs and events, which are the basic units of a simulation.

Section Detector Definition and Response describes how to construct a detector from customized materials and geo-
metric shapes, and embed it in electromagnetic fields. It also describes how to make the detector sensitive to particles
passing through it and how to store this information.

How particles are propagated through a material is treated in Section Tracking and Physics. The GEANT4 “philosophy”
of particle tracking is presented along with summaries of the physics processes provided by the toolkit. The definition
and implementation of GEANT4 particles is discussed and a list of particle properties is provided.

Section User Actions is a description of the “user hooks” by which the simulation code may be customized to perform
special tasks.

Section Control provides a summary of the commands available to the user to control the execution of the simulation.
After Chapter 2, Chapters 6 and 7 are of foremost importance to the new application developer.

The display of detector geometry, tracks and events may be incorporated into a simulation application by using the
tools described in Section Visualization.

Section Examples provides a set of basic, novice, extended and advanced simulation codes which may be compiled
and run “as is” from the GEANT4 source code. These examples may be used as educational tools or as base code from
which more complex applications are developed.

https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/index.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/index.html

Book For Application Developers, Release 11.0

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED WITH GEANT4 - RUNNING A SIMPLE EXAMPLE

2.1 How to Define the main() Program

2.1.1 A Sample main () Method

The contents of main () will vary according to the needs of a given simulation application and therefore must be
supplied by the user. The GEANT4 toolkit does not provide a main () method, but a sample is provided here as a
guide to the beginning user. Listing 2.1 is the simplest example of main () required to build a simulation program.

Listing 2.1: Simplest example of main()

#include "G4RunManagerFactory.hh"
#include "G4UImanager.hh"

#include "ExG4DetectorConstruction0l.hh"
#include "ExG4PhysicsList00.hh"
#include "ExG4ActionInitializationOl.hh"

int main ()

{

// construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// set mandatory initialization classes
runManager—->SetUserInitialization (new ExG4DetectorConstruction01) ;
runManager->SetUserInitialization (new ExG4PhysicsList00);
runManager—>SetUserInitialization (new ExG4ActionInitializationO01);

// initialize G4 kernel
runManager—->Initialize();

// get the pointer to the UI manager and set verbosities
G4UImanager UI = G4UImanager::GetUIpointer();
UI->ApplyCommand ("/run/verbose 1");
UI->ApplyCommand (" /event/verbose 1");
UI->ApplyCommand (" /tracking/verbose 1");

// start a run
int numberOfEvent = 3;
runManager—>BeamOn (numberOfEvent) ;

// job termination
delete runManager;
return 0;

The main () method is implemented by two toolkit classes, G4RunManager and G4UImanager, and three classes,
ExG4DetectorConstruction0l, ExG4PhysicsList00 and ExG4ActionInitializationO1, which

Book For Application Developers, Release 11.0

are derived from toolkit classes. Each of these are explained in the following sections.

2.1.2 G4RunManager

The first thing main () must do is create an instance of the G4RunManager class. This is the only manager class in
the GEANT4 kernel which should be explicitly constructed in the user’s main (). It controls the flow of the program
and manages the event loop(s) within a run. GARunManagerFactory: :CreateRunManager () instantiates a
G4RunManager object whose concrete type is:

* G4AMTRunManager if Geant4 library was built with multithreading support
* G4RunManager otherwise

The concrete type chosen may be overridden at application runtime without recompilation by setting the environment
variable GARUN_MANAGER_TYPE, whose value can be set to either Serial, MT, Tasking or TBB. For Geant4
version 10.7, options Tasking and TBB are provided as beta-release. The traditional style of direct instantiation of
G4RunManager (sequential mode) or GAMTRunMabager (multithreaded mode) is also available.

When G4RunManager is created, the other major manager classes are also created. They are deleted automatically
when G4RunManager is deleted. The run manager is also responsible for managing initialization procedures, in-
cluding methods in the user initialization classes. Through these the run manager must be given all the information
necessary to build and run the simulation, including

1. how the detector should be constructed,

2. all the particles and all the physics processes to be simulated,

3. how the primary particle(s) in an event should be produced, and
4. any additional requirements of the simulation.

In the sample main () the lines
runManager->SetUserInitialization (new ExG4DetectorConstruction01);

runManager—>SetUserInitialization (new ExG4PhysicsList00) ;
runManager—>SetUserInitialization (new ExG4ActionInitialization01);

create objects which specify the detector geometry, physics processes and primary particle, respectively, and pass their
pointers to the run manager. ExG4DetectorConstruction01 is an example of a user initialization class which
is derived from G4VUserDetectorConstruction. This is where the user describes the entire detector setup,
including

* its geometry,

¢ the materials used in its construction,

* adefinition of its sensitive regions and

* the readout schemes of the sensitive regions.

Similarly ExG4PhysicsList01 is derived from G4VUserPhysicsList and requires the user to define

* the particles to be used in the simulation,
* all the physics processes to be simulated.

User can also override the default implementation for
* the range cuts for these particles and

Also ExG4ActionInitializationO1 is derived from G4VUserActionInitialization and requires the
user to define

* so-called user action classes (see next section) that are invoked during the simulation,
» which includes one mandatory user action to define the primary particles.

The next instruction

6 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

runManager—>Initialize();

performs the detector construction, creates the physics processes, calculates cross sections and otherwise sets up the
run. The final run manager method in main ()

int numberOfEvent = 3;
runManager->beamOn (numberOfEvent) ;

begins a run of three sequentially processed events. The beamOn () method may be invoked any number of times
within main () with each invocation representing a separate run. Once a run has begun neither the detector setup nor
the physics processes may be changed. They may be changed between runs, however, as described in Customizing the
Run Manager. More information on G4ARunManager in general is found in Run.

As mentioned above, other manager classes are created when the run manager is created. One of these is the user
interface manager, G4UImanager. Inmain () a pointer to the interface manager must be obtained

G4UImanager* UI = G4UImanager::getUIpointer();

in order for the user to issue commands to the program. In the present example the applyCommand () method is
called three times to direct the program to print out information at the run, event and tracking levels of simulation.
A wide range of commands is available which allows the user detailed control of the simulation. A list of these
commands can be found in Built-in Commands.

2.1.3 User Initialization and Action Classes
User Classes

There are two kinds of user classes, user initialization classes and user action classes. User initialization classes are
used during the initialization phase, while user action classes are used during the run. User initialization classes should
be directly set to G4RunManager through SetUserInitialization () method, while user action classes
should be defined in G4VUserActionInitialization class.

User Initialization Classes

All three user initialization classes are mandatory. They must be derived from the abstract base classes provided by
GEANT4:

* G4VUserDetectorConstruction
* G4VUserPhysicsList
* G4VUserActionInitialization

GEANT4 does not provide default behavior for these classes. G4RunManager checks for the existence of these
mandatory classes when the Initialize () and BeamOn () methods are invoked.

As mentioned in the previous section, G4VUserDetectorConstruction requires the user to define the de-
tector and G4VUserPhysicsList requires the user to define the physics. Detector definition will be discussed
in Sections How fo Define a Detector Geometry and How to Specify Materials in the Detector. Physics def-
inition will be discussed in How to Specify Particles and How to Specify Physics Processes. The user action
G4VUserPrimaryGeneratorAction requires that the initial event state be defined. Primary event generation
will be discussed in How to Make an Executable Program.

G4VUserActionInitialization should include at least one mandatory wuser action class
G4VUserPrimaryGeneratorAction. All user action classes are described in the next section.

2.1. How to Define the main() Program 7

Book For Application Developers, Release 11.0

Listing 2.2: Simplest example of ExG4ActionInitialization01

#include "ExG4ActionInitializationOl.hh"
#include "ExG4PrimaryGeneratorAction(Ol.hh"

void ExG4ActionInitializationOl::Build() const
{

SetUserAction (new ExG4PrimaryGeneratorAction01) ;

}

User Action Classes

G4VUserPrimaryGeneratorAction is a mandatory class the user has to provide. It creates an instance of a
primary particle generator. ExG4PrimaryGeneratorAction01 is an example of a user action class which is
derived from G4VUserPrimaryGeneratorAction. In this class the user must describe the initial state of the
primary event. This class has a public virtual method named GeneratePrimaries () which will be invoked at
the beginning of each event. Details will be given in How to Generate a Primary Event. Note that GEANT4 does not
provide any default behavior for generating a primary event.

GEANT4 provides additional five user hook classes:

* G4UserRunAction

* G4UserEventAction

* G4UserStackingAction
* G4UserTrackingAction
* G4UserSteppingAction

These optional user action classes have several virtual methods which allow the specification of additional procedures
at all levels of the simulation application. Details of the user initialization and action classes are provided in User
Actions.

2.1.4 G4UImanager and Ul CommandSubmission

GEANT4 provides a category named intercoms. G4UImanager is the manager class of this category. Using the
functionalities of this category, you can invoke set methods of class objects of which you do not know the pointer. In
Listing 2.3, the verbosities of various GEANT4 manager classes are set. Detailed mechanism description and usage of
intercoms will be given in the next chapter, with a list of available commands. Command submission can be done all
through the application.

Listing 2.3: An example of main() using interactive terminal.

#include "G4RunManager.hh"
#include "G4UImanager.hh"

#include "G4UIExecutive.hh"

#include "ExG4DetectorConstructionOl.hh"
#include "ExG4PhysicsList00.hh"
#include "ExG4PrimaryGeneratorActionOl.hh"

int main ()

{
// construct the default run manager
G4RunManager* runManager = new G4RunManager;

// set mandatory initialization classes
runManager—->SetUserInitialization (new ExG4DetectorConstruction01) ;

(continues on next page)

8 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

(continued from previous page)

runManager—>SetUserInitialization (new ExG4PhysicsList00);

// set mandatory user action class
runManager—>SetUserAction (new ExG4PrimaryGeneratorAction01) ;

// initialize G4 kernel
runManager—>Initialize();

// Get the pointer to the User Interface manager
G4UImanager UlImanager = G4UImanager::GetUIpointer();

if (argc == 1) {
// interactive mode : define UI session
G4UIExecutive* ui = new G4UIExecutive (argc, argv);
UImanager->ApplyCommand ("/control/execute init.mac");
ui->SessionStart () ;
delete ui;

}

else {
// batch mode
G4String command = "/control/execute
G4String fileName = argv[l];
UImanager—>ApplyCommand (command+fileName) ;

}

",
7

// job termination
delete runManager;
return 0;

2.1.5 G4cout and G4cerr

Although not yet included in the above examples, output streams will be needed. G4cout and G4cerr are iostream
objects defined by GEANT4. The usage of these objects is exactly the same as the ordinary cout and cerr, except that
the output streams will be handled by G4AUImanager. Thus, output strings may be displayed on another window or
stored in a file. Manipulation of these output streams will be described in How to control the output of G4cout/G4cerr.
These objects should be used instead of the ordinary cout and cerr.

2.2 How to Define a Detector Geometry

2.2.1 Basic Concepts

A detector geometry in GEANT4 is made of a number of volumes. The largest volume is called the World volume. It
must contain, with some margin, all other volumes in the detector geometry. The other volumes are created and placed
inside previous volumes, included in the World volume. The most simple (and efficient) shape to describe the World
is a box.

Each volume is created by describing its shape and its physical characteristics, and then placing it inside a containing
volume.

When a volume is placed within another volume, we call the former volume the daughter volume and the latter the
mother volume. The coordinate system used to specify where the daughter volume is placed, is the coordinate system
of the mother volume.

To describe a volume’s shape, we use the concept of a solid. A solid is a geometrical object that has a shape and
specific values for each of that shape’s dimensions. A cube with a side of 10 centimeters and a cylinder of radius 30
cm and length 75 cm are examples of solids.

2.2. How to Define a Detector Geometry 9

Book For Application Developers, Release 11.0

To describe a volume’s full properties, we use a logical volume. It includes the geometrical properties of the solid,
and adds physical characteristics: the material of the volume; whether it contains any sensitive detector elements; the
magnetic field; etc.

We have yet to describe how to position the volume. To do this you create a physical volume, which places a copy of
the logical volume inside a larger, containing, volume.

2.2.2 Create a Simple Volume

What do you need to do to create a volume?

* Create a solid.
* Create a logical volume, using this solid, and adding other attributes.

Each of the volume types (solid, logical, and physical) has an associated registry (VolumeStore) which contains a list
of all the objects of that type constructed so far. The registries will automatically delete those objects when requested;
users should not deleted geometry objects manually.

2.2.3 Choose a Solid

To create a simple box, you only need to define its name and its extent along each of the Cartesian axes.

Listing 2.4: Creating a box.

G4double world_hx = 3.0*m;
G4double world_hy 1.0*m;
G4double world_hz = 1.0+m;

G4Box* worldBox
= new G4Box ("World", world_hx, world_hy, world_hz);

This creates a box named “World” with the extent from -3.0 meters to +3.0 meters along the X axis, from -1.0 to 1.0
meters in Y, and from -1.0 to 1.0 meters in Z. Note that the G4Box constructor takes as arguments the halves of the
total box size.

It is also very simple to create a cylinder. To do this, you can use the G4Tubs class.

Listing 2.5: Creating a cylinder.

G4double innerRadius 0.*cm;
G4double outerRadius = 60.*cm;
G4double hz = 25.+*cm;

G4double startAngle = 0.=xdeg;
G4double spanningAngle = 360.xdeg;

G4Tubs+* trackerTube
= new G4Tubs ("Tracker",
innerRadius,
outerRadius,
0% ;
startAngle,
spanningAngle) ;

This creates a full cylinder, named “Tracker”, of radius 60 centimeters and length 50 cm (the hz parameter represents
the half length in Z).

10 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

2.2.4 Create a Logical Volume

To create a logical volume, you must start with a solid and a material. So, using the box created above, you can create
a simple logical volume filled with argon gas (see How fo Specify Materials in the Detector) by entering:

G4LogicalVolume* worldLog
= new G4LogicalVolume (worldBox, Ar, "World");

This logical volume is named ‘“World”.
Similarly we create a logical volume with the cylindrical solid filled with aluminium

G4LogicalVolume* trackerLog
= new G4LogicalVolume (trackerTube, Al, "Tracker");

and named “Tracker”.

2.2.5 Place a Volume
How do you place a volume? You start with a logical volume, and then you decide the already existing volume inside
of which to place it. Then you decide where to place its center within that volume, and how to rotate it. Once you have

made these decisions, you can create a physical volume, which is the placed instance of the volume, and embodies all
of these attributes.

2.2.6 Create a Physical Volume

You create a physical volume starting with your logical volume. A physical volume is simply a placed instance of the
logical volume. This instance must be placed inside a mother logical volume. For simplicity it is unrotated:

Listing 2.6: A simple physical volume.

G4double pos_x = —1.0xmeter;
G4double pos_y = 0.0+meter;
G4double pos_z = 0.0xmeter;

G4VPhysicalVolume* trackerPhys
= new G4PVPlacement (0, // no rotation
G4ThreeVector (pos_x, pos_y, pos_z),
// translation position

trackerLog, // its logical volume
"Tracker", // its name

worldLog, // its mother (logical) volume
false, // no boolean operations

0); // its copy number

This places the logical volume trackerLog at the origin of the mother volume wor1dLog, shifted by one meter
along X and unrotated. The resulting physical volume is named “Tracker” and has a copy number of 0.

An exception exists to the rule that a physical volume must be placed inside a mother volume. That exception is for
the World volume, which is the largest volume created, and which contains all other volumes. This volume obviously
cannot be contained in any other. Instead, it must be created as a G4PVPlacement with a null mother pointer. It
also must be unrotated, and it must be placed at the origin of the global coordinate system.

Generally, it is best to choose a simple solid as the World volume, the G4Box solid type is used in all basic examples.

2.2. How to Define a Detector Geometry 11

Book For Application Developers, Release 11.0

2.2.7 Coordinate Systems and Rotations

In GEANT4, the rotation matrix associated to a placed physical volume represents the rotation of the reference system
of this volume with respect to its mother.

A rotation matrix is normally constructed as in CLHEP, by instantiating the identity matrix and then applying a rotation
to it. This is also demonstrated in Example B3.

2.3 How to Specify Materials in the Detector

2.3.1 General Considerations

In nature, general materials (chemical compounds, mixtures) are made of elements, and elements are made of isotopes.
Therefore, these are the three main classes designed in GEANT4. Each of these classes has a table as a static data
member, which is for keeping track of the instances created of the respective classes. All three objects automatically
register themselves into the corresponding table on construction, and should never be deleted in user code.

The G4Element class describes the properties of the atoms:

e atomic number,

e number of nucleons,

¢ atomic mass,

* shell energy,

* as well as quantities such as cross sections per atom, etc.

The G4Material class describes the macroscopic properties of matter:

* density,

* state,

* temperature,

* pressure,

* as well as macroscopic quantities like radiation length, mean free path, dE/dx, etc.

The G4Material class is the one which is visible to the rest of the toolkit, and is used by the tracking, the geometry,
and the physics. It contains all the information relative to the eventual elements and isotopes of which it is made, at
the same time hiding the implementation details.

2.3.2 Define a Simple Material
In the example below, liquid argon is created, by specifying its name, density, mass per mole, and atomic number.

Listing 2.7: Creating liquid argon.
G4double z, a, density;
density = 1.390+g/cm3;
a = 39.95xg/mole;

G4Material+ 1lAr = new G4Material (name="liquidArgon", z=18., a, density);

The pointer to the material, /Ar, will be used to specify the matter of which a given logical volume is made:

G4LogicalVolume* myLbox = new G4LogicalVolume (aBox, l1Ar, "Lbox",0,0,0);

12 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

2.3.3 Define a Molecule
In the example below, the water, H20, is built from its components, by specifying the number of atoms in the molecule.

Listing 2.8: Creating water by defining its molecular components.

G4double z, a, density;
G4String name, symbol;
G4int ncomponents, natoms;

a = 1.0l«g/mole;
G4Element* elH = new G4Element (name="Hydrogen", symbol="H" , z= 1., a);

a = 16.00xg/mole;
G4Element+ elO = new G4Element (name="Oxygen" ,symbol="0" , z= 8., a);

density = 1.000xg/cm3;

G4Material+ H20 = new G4Material (name="Water",density,ncomponents=2);
H20->AddElement (elH, natoms=2);

H20->AddElement (e10, natoms=1) ;

2.3.4 Define a Mixture by Fractional Mass
In the example below, air is built from nitrogen and oxygen, by giving the fractional mass of each component.

Listing 2.9: Creating air by defining the fractional mass of its compo-
nents.
G4double z, a, fractionmass, density;

G4String name, symbol;
G4int ncomponents;

a = 14.01xg/mole;
G4Element+ elN = new G4Element (name="Nitrogen",symbol="N" , z= 7., a);

a = 16.00xg/mole;
G4Element+ elO = new G4Element (name="Oxygen" ,symbol="0" , z= 8., a);

density = 1.290+mg/cm3;
G4Material+ Air = new G4Material (name="Air ",density,ncomponents=2);

Air->AddElement (elN, fractionmass=70+perCent) ;
Air->AddElement (elO, fractionmass=30+perCent) ;

2.3.5 Define a Material from the GEANT4 Material Database

In the example below, air and water are accessed via the GEANT4 material database.

2.3. How to Specify Materials in the Detector 13

Book For Application Developers, Release 11.0

Listing 2.10: Defining air and water from the internal GEANT4 database.

G4NistManagerx man = G4NistManager::Instance();

G4Material+ H20 man->FindOrBuildMaterial ("G4_WATER") ;
G4Material+ Air = man->FindOrBuildMaterial ("G4_ATIR");

2.3.6 Define a Material from the Base Material

It is possible to build new material on base of an existing “base” material. This feature is useful for electromagnetic
physics allowing to peak up for the derived material all correction data and precomputed tables of stopping powers
and cross sections of the base material. In the example below, two methods how to create water with unusual density
are shown.

Listing 2.11: Defining water with user defined density on base of
G4_WATER.

G4double density;

density = 1.05xmg/cm3;
G4Material+ waterl = new G4Material ("Water 1.05",density, "G4 WATER");

density = 1.03*mg/cm3;
G4NistManager* man = G4NistManager::Instance();
G4Material+ water2 = man->BuildMaterialWithNewDensity ("Water_ 1.03","G4 _WATER",density);

2.3.7 Print Material Information

Listing 2.12: Printing information about materials.
G4cout << H20; \\ print a given material

G4cout << «*(G4Material::GetMaterialTable()); \\ print the list of materials

In GEANT4 examples you all possible ways to build a material.

2.3.8 Access to GEANT4 material database

14 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

Listing 2.13: GEANT4 material database may be accessed via UI com-

mands.
/material/nist/printElement Fe \\ print element by name
/material/nist/printElementZ 13 \\ print element by atomic number
/material/nist/listMaterials type \\ print materials type = [simple | compound | hep | all]
/material/g4/printElement elmName \\ print instantiated element by name

/material/g4/printMaterial matName \\ print instantiated material by name

In GEANT4 examples you with find all possible ways to build a material.

2.4 How to Specify Particles

G4VUserPhysicsList is one of the mandatory user base classes described in How fo Define the main() Program.
Within this class all particles and physics processes to be used in your simulation must be defined. The range cut-off
parameter should also be defined in this class.

The user must create a class derived from G4VuserPhysicsList and implement the following pure virtual meth-
ods:

ConstructParticle(); // construction of particles
ConstructProcess () ; // construct processes and register them to particles

The user may also want to override the default implementation of the following virtual method:

SetCuts(); // setting a range cut value for all particles

This section provides some simple examples of the ConstructParticle () and SetCuts () methods. For
information on ConstructProcess () methods, please see How fo Specify Physics Processes.

2.4.1 Particle Definition

GEANT4 provides various types of particles for use in simulations:

* ordinary particles, such as electrons, protons, and gammas

* resonant particles with very short lifetimes, such as vector mesons and delta baryons
* nuclei, such as deuteron, alpha, and heavy ions (including hyper-nuclei)

e quarks, di-quarks, and gluon

Each particle is represented by its own class, which is derived from G4ParticleDefinition. (Exception: G4lons
represents all heavy nuclei. Please see Particles.) Particles are organized into six major categories:

* lepton,

¢ meson,

* baryon,

¢ boson,

e shortlived and
e jon,

each of which is defined in a corresponding sub-directory under geant4/source/particles. There is also a
corresponding granular library for each particle category.

2.4. How to Specify Particles 15

Book For Application Developers, Release 11.0

The G4ParticleDefinition Class

G4ParticleDefinition has properties which characterize individual particles, such as, name, mass,
charge, spin, and so on. Most of these properties are ‘“read-only” and can not be changed directly.
GAParticlePropertyTable is used to retrieve (load) particle property of G4ParticleDefinition into
(from) G4ParticlePropertyData.

How to Access a Particle

Each particle class type represents an individual particle type, and each class has a single object. This object can be
accessed by using the static method of each class. There are some exceptions to this rule; please see Particles for
details.

For example, the class G4Electron represents the electron and the member G4Electron: :theInstance
points its only object. The pointer to this object is available through the static methods
G4Electron: :ElectronDefinition (). G4Electron::Definition().

More than 100 types of particles are provided by default, to be used in various physics processes. In normal applica-
tions, users will not need to define their own particles.

The unique object for each particle class is created when its static method to get the pointer is called at the first time.
Because particles are dynamic objects and should be instantiated before initialization of physics processes, you must
explicitly invoke static methods of all particle classes required by your program at the initialization step. (NOTE: The
particle object was static and created automatically before 8.0 release)

Dictionary of Particles

The G4ParticleTable class is provided as a dictionary of particles. Various utility methods are provided, such as:

FindParticle (G4String name) ; // find the particle by name
FindParticle (G4int PDGencoding) // find the particle by PDG encoding .
G4ParticleTable is defined as a singleton object, and the static method

G4ParticleTable: :GetParticleTable () provides its pointer.

As for heavy ions (including hyper-nuclei), objects are created dynamically by requests from users and processes. The
G4ParticleTable class provides methods to create ions, such as:

G4ParticleDefinition* GetIon(G4int atomicNumber,
G4int atomicMass,
G4double excitationEnergy) ;

Particles are registered automatically during construction. The user has no control over particle registration.

Constructing Particles

ConstructParticle () is a pure virtual method, in which the static member functions for all the particles you
require should be called. This ensures that objects of these particles are created.

Warning: You must define “ALL PARTICLE TYPES” which are used in your application, except for heavy ions.
“ALL PARTICLE TYPES” means not only primary particles, but also all other particles which may appear as
secondaries generated by physics processes you use. Beginning with GEANT4 version 8.0, you should keep this
rule strictly because all particle definitions are revised to “non-static” objects.

16 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

For example, suppose you need a proton and a geantino, which is a virtual particle used for simulation and which does
not interact with materials. The ConstructParticle () method is implemented as below:

Listing 2.14: Construct a proton and a geantino.

void MyPhysicsList::ConstructParticle ()
{
G4Proton: :ProtonDefinition () ;
G4Geantino: :GeantinoDefinition () ;

}

Due to the large number of pre-defined particles in GEANT4, it is cumbersome to list all the particles by this method.
If you want all the particles in a GEANT4 particle category, there are six utility classes, corresponding to each of the
particle categories, which perform this function:

* G4BosonConstructor

* G4LeptonConstructor

* G4MesonConstructor

* G4BaryonConstructor

* G4IonConstructor

* G4ShortlivedConstructor.

An example of this is shown in ExNO5PhysicsList, listed below.

Listing 2.15: Construct all leptons.

void ExNO5PhysicsList::ConstructLeptons ()
{
// Construct all leptons
G4LeptonConstructor pConstructor;
pConstructor.ConstructParticle () ;

}

2.4.2 Range Cuts

To avoid infrared divergence, some electromagnetic processes require a threshold below which no secondary will
be generated. Because of this requirement, gammas, electrons and positrons require production threshold. This
threshold should be defined as a distance, or range cut-off, which is internally converted to an energy for individ-
ual materials. The range threshold should be defined in the initialization phase using the SetCuts () method of
GAVUserPhysicsList. Cuts per Region discusses threshold and tracking cuts in detail.

Setting the cuts

Production threshold values should be defined in SetCuts () which is a virtual method of the
G4VUserPhysicsList. Construction of particles, materials, and processes should precede the invocation of
SetCuts (). G4ARunManager takes care of this sequence in usual applications.

This range cut value is converted threshold energies for each material and for each particle type (i.e. electron, positron
and gamma) so that the particle with threshold energy stops (or is absorbed) after traveling the range cut distance.
In addition, from the 9.3 release ,this range cut value is applied to the proton as production thresholds of nuclei for
hadron elastic processes. In this case, the range cut value does not means the distance of traveling. Threshold energies
are calculated by a simple formula from the cut in range.

Note that the upper limit of the threshold energy is defined as 10 GeV. If you want to set higher threshold energy, you
can change the limit by using “/cuts/setMaxCutEnergy” command before setting the range cut.

2.4. How to Specify Particles 17

Book For Application Developers, Release 11.0

The idea of a “unique cut value in range” is one of the important features of GEANT4 and is used to handle cut values
in a coherent manner. For most applications, users need to determine only one cut value in range, and apply this value
to gammas, electrons and positrons alike. (and proton too)

The default implementation of SetCuts () method provides a defaultCutValue member as the unique range
cut-off value for all particle types. The defaultCutValue is set to 1.0 mm by default. User can change this
value by SetDefaultCutValue () The “/run/setCut” command may be used to change the default cut value
interactively.

Warning: DO NOT change cut values inside the event loop. Cut values may however be changed between runs.

It is possible to set different range cut values for gammas, electrons and positrons by using Set CutValue () methods
(or using “/run/setCutForAGivenParticle” command). However, user must be careful with physics outputs because
GEANT4 processes (especially energy loss) are designed to conform to the “unique cut value in range” scheme.

Beginning with GEANT4 version 5.1, it is now possible to set production thresholds for each geometrical region. This
new functionality is described in Cuts per Region.

2.5 How to Specify Physics Processes

2.5.1 Physics Processes

Physics processes describe how particles interact with materials. GEANT4 provides seven major categories of pro-
cesses:

* electromagnetic,

¢ hadronic,

e transportation,

* decay,

* optical,

¢ photolepton_hadron, and
* parameterisation.

All physics processes are derived from the G4VProcess base class. Its virtual methods

e AtRestDolIt,
* AlongStepDolt, and
e PostStepDolIt

and the corresponding methods

* AtRestGetPhysicallInteractionLength,
* AlongStepGetPhysicalInteractionLength, and
* PostStepGetPhysicallInteractionLength

describe the behavior of a physics process when they are implemented in a derived class. The details of these methods
are described in Physics Processes.

The following are specialized base classes to be used for simple processes:

G4VAtRestProcess Processes with only AtRestDoIt
G4VContinuousProcess Processes with only AlongStepDoIt
G4VDiscreteProcess processes with only Post StepDolt

Another 4 virtual classes, such as G4VCont inuousDiscreteProcess, are provided for complex processes.

18 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

2.5.2 Managing Processes

The G4ProcessManager class contains a list of processes that a particle can undertake. It has information on the
order of invocation of the processes, as well as which kind of DoIt method is valid for each process in the list. A
G4AProcessManager object corresponds to each particle and is attached to the G4ParticleDefiniton class.

In order to validate processes, they should be registered with the particle’s G4ProcessManager. Process ordering
information is included by using the AddProcess () and SetProcessOrdering () methods. For registration of
simple processes, the AddAtRestProcess (), AddContinuousProcess () and AddDiscreteProcess ()

methods may be used.

GAProcessManager is able to turn some processes on or off during a run by using the ActivateProcess ()
and InActivateProcess () methods. These methods are valid only after process registration is complete, so they
must not be used in the Prelnit phase.

The G4VUserPhysicsList class creates and attaches G4ProcessManager objects to all particle classes defined
in the ConstructParticle () method.

2.5.3 Specifying Physics Processes

G4VUserPhysicsList is the base class for a “mandatory user class” (see How to Define the main() Program), in
which all physics processes and all particles required in a simulation must be registered. The user must create a class
derived from G4VUserPhysicsList and implement the pure virtual method ConstructProcess ().

For example, if just the GAGeantino particle class is required, only the transportation process need be registered.
The ConstructProcess () method would then be implemented as follows:

Listing 2.16: Register processes for a geantino.

void MyPhysicsList::ConstructProcess ()
{
// Define transportation process
AddTransportation () ;
}

Here, the AddTransportation () method is provided in the G4VUserPhysicsList class to register the
GATransportation class with all particle classes. The GATransportation class (and/or related classes) de-
scribes the particle motion in space and time. It is the mandatory process for tracking particles.

In the ConstructProcess () method, physics processes should be created and registered with each particle’s
instance of G4ProcessManager.

An example of process registration is given in the G4VUserPhysicsList::AddTransportation () method.

Registration in G4ProcessManager is a complex procedure for other processes and particles because the relations
between processes are crucial for some processes. In order to ease registration procedures, G4PhysicsListHelper is
provided. Users do not care about type of processes (i.e. AtRest and/or Discrete and/or Continuous) or ordering
parameters.

An example of electromagnetic process registration for the gamma is shown below

Listing 2.17: Register processes for a gamma.

void MyPhysicsList::ConstructProcess ()
{
// Define transportation process
AddTransportation () ;
// electromagnetic processes
ConstructEM() ;

(continues on next page)

2.5. How to Specify Physics Processes 19

Book For Application Developers, Release 11.0

(continued from previous page)

}

void MyPhysicsList::ConstructEM()
{
// Get pointer to G4PhysicsListHelper
G4PhysicsListHelper* ph = G4PhysicsListHelper: :GetPhysicsListHelper();

// Get pointer to gamma
G4ParticleDefinition* particle = G4Gamma: :GammaDefinition () ;

// Construct and register processes for gamma
ph->RegisterProcess (new G4PhotoElectricEffect (), particle);

ph->RegisterProcess (new G4ComptonScattering(), particle);
ph->RegisterProcess (new G4GammaConversion (), particle);
ph->RegisterProcess (new G4RayleighScattering(), particle);

2.6 How to Generate a Primary Event

2.6.1 Generating Primary Events

G4VuserPrimaryGeneratorAction is one of the mandatory classes available for deriving your own concrete
class. In your concrete class, you have to specify how a primary event should be generated. Actual generation of
primary particles will be done by concrete classes of G4VPrimaryGenerator, explained in the following sub-
section. Your G4VUserPrimaryGeneratorAction concrete class just arranges the way primary particles are
generated.

Listing 2.18: ExG4PrimaryGeneratorAction0l: An example of a
G4VUserPrimaryGeneratorAction concrete class using G4ParticleGun.
For the usage of G4Particle Gun refer to the next subsection.

LILLLLLL LSS S
// ExG4PrimaryGeneratorAction01.hh
LIS

#ifndef ExG4PrimaryGeneratorAction0l_h
#define ExG4PrimaryGeneratorAction0Il_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "G4ThreeVector.hh"
#include "globals.hh"

class G4ParticleGun;
class G4Event;

class ExG4PrimaryGeneratorAction0l : public G4VUserPrimaryGeneratorAction
{
public:
ExG4PrimaryGeneratorAction01 (
const G4Stringé& particleName = "geantino',
G4double energy = 1.xMeV,
G4ThreeVector position= G4ThreeVector (0,0,0),
G4ThreeVector momentumDirection = G4ThreeVector (0,0,1));
~ExG4PrimaryGeneratorActionO01 () ;

// methods
virtual void GeneratePrimaries (G4Eventx) ;

private:

(continues on next page)

20 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

(continued from previous page)

2.6. How to Generate a Primary Event

Book For Application Developers, Release 11.0

Selection of the generator

In the constructor of your G4VUserPrimaryGeneratorAction, you should instantiate the primary generator(s).
If necessary, you need to set some initial conditions for the generator(s).

In ExG4PrimaryGeneratorAction0l, GAParticleGun is constructed to use as the actual primary particle generator.
Methods of G4ParticleGun are described in the following section. Please note that the primary generator object(s)
you construct in your G4VUserPrimaryGeneratorAction concrete class must be deleted in your destructor.

Generation of an event

G4VUserPrimaryGeneratorAction has a pure virtual method named generatePrimaries (). This
method is invoked at the beginning of each event. In this method, you have to invoke the G4VPrimaryGenerator
concrete class you instantiated via the generatePrimaryVertex () method.

You can invoke more than one generator and/or invoke one generator more than once. Mixing up several generators
can produce a more complicated primary event.

2.6.2 G4VPrimaryGenerator

GEANT4 provides three G4VPrimaryGenerator concrete classes. Among these G4ParticleGun and
G4GeneralParticleSource will be discussed here. The third one is G4HEPEvt Interface, which will be
discussed in Event Generator Interface.

G4ParticleGun

G4ParticleGun is a generator provided by GEANT4. This class generates primary particle(s) with a given mo-
mentum and position. It does not provide any sort of randomizing. The constructor of G4ParticleGun takes an
integer which causes the generation of one or more primaries of exactly same kinematics. It is a rather frequent user
requirement to generate a primary with randomized energy, momentum, and/or position. Such randomization can be
achieved by invoking various set methods provided by G4ParticleGun. The invocation of these methods should be
implemented in the generatePrimaries () method of your concrete G4VUserPrimaryGeneratorAction
class before invoking generatePrimaryVertex () of G4ParticleGun. GEANT4 provides various random
number generation methods with various distributions (see Global Usage Classes).

Public methods of G4ParticleGun

The following methods are provided by G4ParticleGun, and all of them can be invoked from the
generatePrimaries () method in your concrete G4VUserPrimaryGeneratorAction class.

e void SetParticleDefinition (G4ParticleDefinitionx*)
e void SetParticleMomentum (G4ParticleMomentum)

* void SetParticleMomentumDirection (G4ThreeVector)
* void SetParticleEnergy (G4double)

* void SetParticleTime (G4double)

* void SetParticlePosition (G4ThreeVector)

e void SetParticlePolarization (G4ThreeVector)

e void SetNumberOfParticles (G4int)

22 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

G4GeneralParticleSource

For many applications G4ParticleGun is a suitable particle generator. However if you want to generate primary
particles in more sophisticated manner, you can utilize G4GeneralParticleSource, the GEANT4 General Par-
ticle Source module (GPS), discussed in the next section (General Particle Source).

2.7 GEANT4 General Particle Source

2.7.1 Introduction

The G4GeneralParticleSource (GPS) is part of the GEANT4 toolkit for Monte-Carlo, high-energy particle
transport. Specifically, it allows the specifications of the spectral, spatial and angular distribution of the primary
source particles. An overview of the GPS class structure is presented here. Configuration covers the configuration of
GPS for a user application, and Macro Commands describes the macro command interface. Example Macro File gives
an example input file to guide the first time user.

G4GeneralParticleSource is used exactly the same way as G4ParticleGun in a GEANT4 application. In
existing applications one can simply change your PrimaryGeneratorAction by globally replacing G4ParticleGun
with G4GeneralParticleSource. GPS may be configured via command line, or macro based, input. The
experienced user may also hard-code distributions using the methods and classes of the GPS that are described in
more detail in a technical note'.

The class diagram of GPS is shown in Fig. 2.1. As of version 10.01, a split-class mechanism was introduced to
reduce memory usage in multithreaded mode. The G4GeneralParticleSourceData class is a thread-safe
singleton which provides access to the source information for the G4GeneralParticleSource class. The
G4GeneralParticleSourceData class can have multiple instantiations of the G4SingleParticleSource
class, each with independent positional, angular and energy distributions as well as incident particle types. To the user,
this change should be transparent.

<<thread-private> > <<singleton> >
GaG IParticleSource | GaG IParticleSourc
[1

¢

<<thread-shared> >
GA4GeneralParticleSource Data

GaSingleParticleSource
G4SPSPosDistribution [G4SPSAngDistribution | [GasPSEneDistribution |

G45PSRandomGenerator

Fig. 2.1: The class diagram of G4GeneralParticleSource.

! General purpose Source Particle Module for GEANT4/SPARSET: Technical Note, UoS-GSPM-Tech, Issue 1.1, C Ferguson, February 2000.

2.7. GEANT4 General Particle Source 23

Book For Application Developers, Release 11.0

2.7.2 Configuration

GPS allows the user to control the following characteristics of primary particles:

* Spatial sampling: on simple 2D or 3D surfaces such as discs, spheres, and boxes.

* Angular distribution: unidirectional, isotropic, cosine-law, beam or arbitrary (user defined).
» Spectrum: linear, exponential, power-law, Gaussian, blackbody, or piece-wise fits to data.

* Multiple sources: multiple independent sources can be used in the same run.

As noted above, G4GeneralParticleSource is used exactly the same way as G4ParticleGun in a GEANT4
application, and may be substituted for the latter by “global search and replace” in existing application source code.

Position Distribution

The position distribution can be defined by using several basic shapes to contain the starting positions of the particles.
The easiest source distribution to define is a point source. One could also define planar sources, where the particles
emanate from circles, annuli, ellipses, squares or rectangles. There are also methods for defining 1D or 2D accelerator
beam spots. The five planes are oriented in the x-y plane. To define a circle one gives the radius, for an annulus one
gives the inner and outer radii, and for an ellipse, a square or a rectangle one gives the half-lengths in x and y.

More complicated still, one can define surface or volume sources where the input particles can be confined to ei-
ther the surface of a three dimensional shape or to within its entire volume. The four 3D shapes used within
G4GeneralParticleSource are sphere, ellipsoid, cylinder and parallelepiped. A sphere can be defined simply by spec-
ifying the radius. Ellipsoids are defined by giving their half-lengths in x, y and z. Cylinders are defined such that the
axis is parallel to the z-axis, the user is therefore required to give the radius and the z half-length. Parallelepipeds are
defined by giving x, y and z half-lengths, plus the angles «, 6, and ¢ (Fig. 2.2).

Fig. 2.2: The angles used in the definition of a Parallelepiped.

To allow easy definition of the sources, the planes and shapes are assumed to be orientated in a particular direction
to the coordinate axes, as described above. For more general applications, the user may supply two vectors (x’ and a
vector in the plane x’-y’) to rotate the co-ordinate axes of the shape with respect to the overall co-ordinate system (Fig.
2.3). The rotation matrix is automatically calculated within G4GeneralParticleSource. The starting points of particles
are always distributed homogeneously over the 2D or 3D surfaces, although biasing can change this.

24 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

= =

Y‘.ﬂ

25

X!‘

Fig. 2.3: An illustration of the use of rotation matrices. A cylinder is defined with its axis parallel to the z-axis (black
lines), but the definition of 2 vectors can rotate it into the frame given by x’, y’, z’ (red lines).

Angular Distribution

The angular distribution is used to control the directions in which the particles emanate from/incident upon the source
point. In general there are three main choices, isotropic, cosine-law or user-defined. In addition there are options for
specifying parallel beam as well as diverse accelerator beams. The isotropic distribution represents what would be
seen from a uniform 47 flux. The cosine-law represents the distribution seen at a plane from a uniform 27 flux.

It is possible to bias (Biasing) both 8 and ¢ for any of the predefined distributions, including setting lower and upper
limits to 6 and ¢. User-defined distributions cannot be additionally biased (any bias should obviously be incorporated
into the user definition).

Incident with zenith angle § = 0 means the particle is travelling along the -z axis. It is important to bear this in mind
when specifying user-defined co-ordinates for angular distributions. The user must be careful to rotate the co-ordinate
axes of the angular distribution if they have rotated the position distribution (Fig. 2.3).

The user defined distribution requires the user to enter a histogram in either € or ¢ or both. The user-defined distribution
may be specified either with respect to the coordinate axes or with respect to the surface-normal of a shape or volume.
For the surface-normal distribution, 6 should only be defined between 0 and 7 /2, not the usual O to 7 range.

The top-level /gps/direction command uses direction cosines to specify the primary particle direction, as fol-
lows:

P, = —sinf cos ¢
P, = —sinfsin¢ 2.1
P, = —cosf

2.7. GEANT4 General Particle Source 25

Book For Application Developers, Release 11.0

Energy Distribution
The energy of the input particles can be set to follow several built-in functions or a user-defined one, as shown in Table

2.1. The user can bias any of the pre-defined energy distributions in order to speed up the simulation (user-defined
distributions are already biased, by construction).

Table 2.1: Energy distribution commands.

Spectrum Abbreviation | Functional Form User Parameters

mono-energetic Mono I x §(E — Ey) Energy Ey

linear Lin ITxly+mxFE Intercept Iy, slope m

exponential Exp I x exp(—E/Ey) Energy scale-height Fy

power-law Pow I o< E® Spectral index «

Gaussian Gauss I = (270) 2 exp|—(E/Ey)%/0?] Mean energy FEy, standard
deviation o

bremsstrahlung Brem I = [2E%*[h*c*(exp(—E/kT) — 1)]~! | Temperature T'

black body Bbody I (kT)2 E exp(—E/kT) Temperature T (see text)

cosmic diffuse | Cdg I < [(E/Ey)® + (E/Ep)®2] 7T Energy range Fpin t0 Enay;

gamma ray energy E, and indices aj
and «y are fixed (see text)

There is also the option for the user to define a histogram in energy (“User”) or energy per nucleon (“Epn”) or to give
an arbitrary point-wise spectrum (“Arb”) that can be fit with various simple functions. The data for histograms or point
spectra must be provided in ascending bin (abscissa) order. The point-wise spectrum may be differential (as with a
binned histogram) or integral (a cumulative distribution function). If integral, the data must satisfy s(el) > s(e2) for
el < e2 when entered; this is not validated by the GPS code. The maximum energy of an integral spectrum is defined
by the last-but-one data point, because GPS converts to a differential spectrum internally.

Unlike the other spectral distributions it has proved difficult to integrate indefinitely the black-body spectrum and this
has lead to an alternative approach. Instead it has been decided to use the black-body formula to create a 10,000 bin
histogram and then to produce random energies from this.

Similarly, the broken power-law for cosmic diffuse gamma rays makes generating an indefinite integral CDF problem-
atic. Instead, the minimum and maximum energies specified by the user are used to construct a definite-integral CDF
from which random energies are selected.

Biasing

The user can bias distributions by entering a histogram. It is the random numbers from which the quantities are picked
that are biased and so one only needs a histogram from 0 to 1. Great care must be taken when using this option, as the
way a quantity is calculated will affect how the biasing works, as discussed below. Bias histograms are entered in the
same way as other user-defined histograms.

When creating biasing histograms it is important to bear in mind the way quantities are generated from those numbers.
For example let us compare the biasing of a 6 distribution with that of a ¢ distribution. Let us divide the # and ¢ ranges
up into 10 bins, and then decide we want to restrict the generated values to the first and last bins. This gives a new ¢
range of 0 to 0.628 and 5.655 to 6.283. Since ¢ is calculated using ¢ = 27 x RNDM, this simple biasing will work
correctly.

If we now look at 6, we expect to select values in the two ranges 0 to 0.314 (for 0 < RNDM < 0.1) and 2.827 to 3.142
(for 0 < RNDM < 0.9). However, the polar angle 6 is calculated from the formula § = arccos(1 — 2 x RNDM).
From this, we see that 0.1 gives a 6 of 0.644 and a RNDM of 0.9 gives a 6 of 2.498. This means that the above
will not bias the distribution as the user had wished. The user must therefore take into account the method used to
generate random quantities when trying to apply a biasing scheme to them. Some quantities such as x, y, z and ¢ will
be relatively easy to bias, but others may require more thought.

26 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

User-Defined Histograms

The user can define histograms for several reasons: angular distributions in either 8 or ¢; energy distributions; energy
per nucleon distributions; or biasing of X, y, z, 8, ¢, or energy. Even though the reasons may be different the approach
is the same.

To choose a histogram the command /gps/hist/type is used (Macro Commands). If one wanted to enter an
angular distribution one would type “theta” or “phi” as the argument. The histogram is loaded, one bin at a time,
by using the /gps/hist/point command, followed by its two arguments the upper boundary of the bin and the
weight (or area) of the bin. Histograms are therefore differential functions.

Currently histograms are limited to 1024 bins. The first value of each user input data pair is treated as the upper edge
of the histogram bin and the second value is the bin content. The exception is the very first data pair the user input
whose first value is the treated as the lower edge of the first bin of the histogram, and the second value is not used.
This rule applies to all distribution histograms, as well as histograms for biasing.

The user has to be aware of the limitations of histograms. For example, in general ¢ is defined between 0 and 7 and ¢
is defined between 0 and 27, so histograms defined outside of these limits may not give the user what they want (see
also Biasing).

2.7.3 Macro Commands

G4GeneralParticleSource can be configured by typing commands from the /gps command directory tree, or
including the /gps commands in a g4macro file.

G4ParticleGun equivalent commands

Table 2.2: G4ParticleGun equivalent commands.

Command Arguments | Description and restrictions

/gps/List List available incident particles

/gps/particle name Defines the particle type [default geantino], using GEANT4 naming con-
vention.

/gps/direction Px Py Pz Set the momentum direction [default (1,0,0)] of generated particles us-
ing (2.1)

/gps/energy E unit Sets the energy [default 1 MeV] for mono-energetic sources. The units
can be eV, keV, MeV, GeV, TeV or PeV. (NB: it is recommended to use
/gps/ene/mono instead.)

/gps/position XY Zunit | Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm].
The units can be micron, mm, cm, m or km. (NB: it is recommended to
use /gps/pos/centre instead.)

/gps/ion ZAQE After /gps/particle ion, sets the properties (atomic number Z,
atomic mass A, ionic charge Q, excitation energy E in keV) of the ion.

/gpsfionLvl ZAQIvl After /gps/particle ion, sets the properties (atomic number Z,
atomic mass A, ionic charge Q, Number of metastable state excitation
level (0-9) of the ion.

/gps/time t0 unit Sets the primary particle (event) time [default O ns]. The units can be
ps, ns, us, ms, or s.

/gps/polarization | Px Py Pz Sets the polarization vector of the source, which does not need to be a
unit vector.

/gps/mumber N Sets the number of particles [default 1] to simulate on each event.

/gps/verbose level Control the amount of information printed out by the GPS code. Larger
values produce more detailed output.

2.7.

GEANT4 General Particle Source

Book For Application Developers, Release 11.0

Multiple source specification

Table 2.3: Multiple source specification.

Command Arguments | Description and restrictions

/gps/source/add intensity Add a new particle source with the specified intensity

/gps/source/list List the particle sources defined.

/gps/source/clear Remove all defined particle sources.

/gps/source/show Display the current particle source

/gps/source/set index Select the specified particle source as the current one.

/gps/source/delete index Remove the specified particle source.

/gps/source/ multiplevertex | flag Specify true for simultaneous generation of multiple vertices, one from
each specified source. False [default] generates a single vertex, choos-
ing one source randomly.

/gps/source/ intensity intensity Reset the current source to the specified intensity

/gps/source/ flatsampling flag Set to True to allow biased sampling among the sources. Setting to True

will ignore source intensities. The default is False.

28

Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11

.0

Source position and structure

Table 2.4: Source position and structure.

Command

Arguments

Description and restrictions

/gps/pos/type

dist

Sets the source positional distribution type: Point [default], Plane,
Beam, Surface, Volume.

/gps/pos/shape

shape

Sets the source shape type, after /gps/pos/type has been used. For
a Plane this can be Circle, Annulus, Ellipse, Square, Rectangle. For
both Surface or Volume sources this can be Sphere, Ellipsoid, Cylinder,
Para (parallelepiped).

/gps/pos/centre

XY Z unit

Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm].
The units can only be micron, mm, cm, m or km.

/gps/pos/rotl

R1, RI, R1,

Defines the first (x* direction) vector R1 [default (1,0,0)], which does
not need to be a unit vector, and is used together with /gps/pos/
rot2 to create the rotation matrix of the shape defined with /gps/
shape.

/gps/pos/rot2

R2, R2, R2,

Defines the second vector R2 in the xy plane [default (0,1,0)], which
does not need to be a unit vector, and is used together with /gps/
pos/rotl to create the rotation matrix of the shape defined with /
gps/shape.

/gps/pos/halfx

len unit

Sets the half-length in x [default O cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/halfy

len unit

Sets the half-length in y [default O cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/halfz

len unit

Sets the half-length in z [default 0 cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/radius

len unit

Sets the radius [default O cm] of the source or the outer radius for annuli.
The units can only be micron, mm, cm, m or km.

/gps/pos/inner_radius

len unit

Sets the inner radius [default O cm] for annuli. The units can only be
micron, mm, ¢cm, m or km.

/gps/pos/sigma_r

sigma unit

Sets the transverse (radial) standard deviation [default O cm] of beam
position profile. The units can only be micron, mm, cm, m or km.

/gps/pos/sigma_x

sigma unit

Sets the standard deviation [default O cm] of beam position profile in
x-direction. The units can only be micron, mm, cm, m or km.

/gps/pos/sigma_y

sigma unit

Sets the standard deviation [default O cm] of beam position profile in
y-direction. The units can only be micron, mm, cm, m or km.

/gps/pos/paralp

alpha unit

Used with a Parallelepiped. The angle [default O rad] « formed by the
y-axis and the plane joining the centre of the faces parallel to the zx
plane at y and +y. The units can only be deg or rad.

/gps/pos/parthe

theta unit

Used with a Parallelepiped. Polar angle [default O rad] 6 of the line
connecting the centre of the face at z to the centre of the face at +z. The
units can only be deg or rad.

/gps/pos/parphi

phi unit

Used with a Parallelepiped. The azimuth angle [default O rad] ¢ of the
line connecting the centre of the face at z with the centre of the face at
+z. The units can only be deg or rad.

/gps/pos/confine

name

Allows the user to confine the source to the physical volume name [de-
fault NULL].

2.7. GEANT4 General Particle Source

29

Book For Application Developers, Release 11.0

Source direction and angular distribution

Table 2.5: Source direction and angular distribution.

Command Arguments Description and restrictions

/gps/ang/type AngDis Sets the angular distribution type (iso [default], cos, planar, beamld,
beam?2d, focused, user) to either isotropic, cosine-law or user-defined.

/gps/ang/rotl ARI, AR1y AR1, | Defines the first (x’ direction) rotation vector AR1 [default (1,0,0)] for
the angular distribution and is not necessarily a unit vector. Used with
/gps/ang/rot?2 to compute the angular distribution rotation matrix.

/gps/ang/rot2 AR2, AR2, AR2, | Defines the second rotation vector AR2 in the xy plane [default (0,1,0)]
for the angular distribution, which does not necessarily have to be a unit
vector. Used with /gps/ang/rot2 to compute the angular distribu-
tion rotation matrix.

/gps/ang/mintheta MinTheta unit Sets a minimum value [default O rad] for the 6 distribution. Units can
be deg or rad.

/gps/ang/maxtheta | MaxTheta unit Sets a maximum value [default 7 rad] for the 6 distribution. Units can
be deg or rad.

/gps/ang/minphi MinPhi unit Sets a minimum value [default O rad] for the ¢ distribution. Units can
be deg or rad.

/gps/ang/maxphi MaxPhi unit Sets a maximum value [default 27 rad] for the ¢ distribution. Units can

be deg or rad.

/gps/ang/sigma_r sigma unit Sets the standard deviation [default O rad] of beam directional profile in
radial. The units can only be deg or rad.

/gps/ang/sigma_x sigma unit Sets the standard deviation [default O rad] of beam directional profile in
x-direction. The units can only be deg or rad.

/gps/ang/sigma_y sigma unit Sets the standard deviation [default O rad] of beam directional profile in
y-direction. The units can only be deg or rad.

/gps/ang/focuspoint | X Y Z unit Set the focusing point (X,Y,Z) for the beam [default (0,0,0) cm]. The
units can only be micron, mm, cm, m or km.

/gps/ang/user_coor | bool Calculate the angular distribution with respect to the user defined co-
ordinate system (true), or with respect to the global co-ordinate system
(false, default).

/gps/ang/surfnorm bool Allows user to choose whether angular distributions are with respect
to the co-ordinate system (false, default) or surface normals (true) for
user-defined distributions.

30 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

Energy spectra

Table 2.6: Source energy spectra.

Command Arguments | Description and restrictions

/gps/ene/type EnergyDis Sets the energy distribution type to one of (see Table Table 2.1): Mono
(mono-energetic, default), Lin (linear), Pow (power-law), Exp (ex-
ponential), Gauss (Gaussian), Brem (bremsstrahlung), Bbody (black-
body), Cdg (cosmic diffuse gamma-ray), User (user-defined his-
togram), Arb (point-wise spectrum), Epn (energy-per-nucleon his-
togram)

/gps/ene/min Emin unit Sets the minimum [default 0 keV] for the energy distribution. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/max Emax unit Sets the maximum [default O keV] for the energy distribution. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/mono E unit Sets the energy [default 1 MeV] for mono-energetic sources. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/sigma sigma unit Sets the standard deviation [default 0 keV] in energy for Gaussian or
Mono energy distributions. The units can be eV, keV, MeV, GeV, TeV
or PeV.

/gps/ene/alpha alpha Sets the exponent « [default 0] for a power-law distribution.

/gps/ene/temp T Sets the temperature in kelvins [default O] for black body and
bremsstrahlung spectra.

/gps/ene/ezero EO Sets scale Eq [default 0] for exponential distributions.

/gps/ene/gradient gradient Sets the gradient (slope) [default 0] for linear distributions.

/gps/ene/intercept intercept Sets the Y-intercept [default O] for the linear distributions.

/gps/ene/biasAlpha | alpha Sets the exponent « [default O] for a biased power-law distribution. Bias
weight is determined from the power-law probability distribution.

/gps/ene/calculate Prepares integral PDFs for the internally-binned cosmic diffuse gamma
ray (Cdg) and black body (Bbody) distributions.

/gps/ene/emspec bool Allows user to specify distributions are in momentum (false) or energy
(true, default). Only valid for User and Arb distributions.

/gps/ene/diffspec bool Allows user to specify whether a point-wise spectrum is integral (false)
or differential (true, default). The integral spectrum is only usable for
Arb distributions.

2.7. GEANT4 General Particle Source

31

Book For Application Developers, Release 11.0

User-defined histograms and interpolated functions

Table 2.7: User defined histograms and interpolated functions.

Command Arguments | Description and restrictions

/gps/hist/type | type Set the histogram type: predefined biasx [default], biasy, biasz, biast
(angle 0, biasp (angle ¢), biaspt (position 6, biaspp (position ¢), bi-
ase; user-defined histograms theta, phi, energy, arb (point-wise), epn
(energy per nucleon).

/gps/hist/reset | type Re-set the specified histogram: biasx [default], , biasy, biasz, biast, bi-
asp, biaspt, biaspp, biase, theta, phi, energy, arb, epn.

/gps/hist/point | Ey; Weight Specify one entry (with contents Weight) in a histogram (where Ey;
is the bin upper edge) or point-wise distribution (where Ey; is the ab-
scissa). The abscissa Ep; must be in GEANT4 default units (MeV for
energy, rad for angle).

/gps/hist/file HistFile Import an arbitrary energy histogram in an ASCII file. The format
should be one Ey; Weight pair per line of the file, following the detailed
instructions in User-defined histograms and interpolated functions For
histograms, Ey; is the bin upper edge, for point-wise distributions Ey; is
the abscissa. The abscissa E;; must be in GEANT4 default units (MeV
for energy, rad for angle).

/gps/hist/inter | type Sets the interpolation type (Lin linear, Log logarithmic, Exp exponen-
tial, Spline cubic spline) for point-wise spectra. This command must be
issued immediately after the last data point.

2.7.4 Example Macro File

Macro test2.g4mac
/control/verbose 0
/tracking/verbose 0
/event /verbose 0
/gps/verbose 2
/gps/particle gamma
/gps/pos/type Plane
/gps/pos/shape Square
/gps/pos/centre 1 2 1 cm
/gps/pos/halfx 2 cm
/gps/pos/halfy 2 cm
/gps/ang/type cos
/gps/ene/type Lin
/gps/ene/min 2 MeV
/gps/ene/max 10 MeV
/gps/ene/gradient 1
/gps/ene/intercept 1
/run/beamOn 10000

The above macro defines a planar source, square in shape, 4 cm by 4 cm and centred at (1,2,1) cm. By default the
normal of this plane is the z-axis. The angular distribution is to follow the cosine-law. The energy spectrum is linear,
with gradient and intercept equal to 1, and extends from 2 to 10 MeV. 10,000 primaries are to be generated.

The standard GEANT4 output should show that the primary particles start from between 1, 0, 1 and 3, 4, 1 (in cm) and
have energies between 2 and 10 MeV, as shown in Fig. 2.4, in which we plotted the actual energy, position and angular
distributions of the primary particles generated by the above macro file.

32 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

3000
2000 F

1000

Source Energy Spectrum Source X— distributien
+E 4 E
2 F 2 -
o F o E
2 | 2 |
“hEr e PR
-4 -z 0 2 4 -4 -2 0 2 4
Source X—Z distribution Source T—Z distribution

P IR |
200

L L o R S s A
300 0 100 200 300

—1 |

T
o 100

Source cosltheta)—phi distribution Souree theta,/phi distribution

Fig. 2.4: Energy, position and angular distributions of the primary particles as generated by the macro file shown
above.

2.8 How to Make an Executable Program

The code for the user examples in Geant4 is placed in the subdirectory examples of the main Geant4 source package.
This directory is installed to the share/Geant4-G4VERSION/examples (where G4AVERSION is the Geant4
version number) subdirectory under the installation prefix. In the following section, a quick overview will be given on
how to build a concrete example, “ExampleB1”, which is part of the Geant4 distribution, using CMake.

2.8.1 Using CMake to Build Applications

Geant4 installs a file named Geant4Config.cmake located in

+— CMAKE_INSTALL_PREFIX
+- lib/
+- Geant4-G4VERSION/
+— Geant4Config.cmake

which is designed for use with the CMake find_package command. Building a Geant4 application using CMake
therefore involves writing a CMakeLists.txt script using this and other CMake commands to locate Geant4 and
describe the build of your client application. Whilst it requires a bit of effort to write the script, CMake provides a
very friendly yet powerful tool, especially if you are working on multiple platforms. It is therefore the method we
recommend for building Geant4 applications.

We’ll use Basic Example B1, which you may find in the Geant4 source directory under examples/basic/B1, to
demonstrate the use of CMake to build a Geant4 application. You’ll find links to the latest CMake documentation for
the commands used throughout, so please follow these for further information. The application sources and scripts are
arranged in the following directory structure:

+- B1/
+- CMakeLists.txt
+- exampleBl.cc
+- include/

(continues on next page)

2.8. How to Make an Executable Program 33

Book For Application Developers, Release 11.0

(continued from previous page)

| ... headers.hh ...
+- src/
sources.cc ...

Here, exampleB1 . cc contains main () for the application, with include/ and src/ containing the implemen-
tation class headers and sources respectively. This arrangement of source files is not mandatory when building with
CMake, apart from the location of the CMakeLists . txt file in the root directory of the application.

The text file CMakeLists.txt is the CMake script containing commands which describe how to build the exam-
pleB1 application

(1)
cmake_minimum_required (VERSION 3.16...3.21)
project (B1)

(2)
option (WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if (WITH_GEANT4_UIVIS)

find_package (Geant4 REQUIRED ui_all vis_all)

else ()
find_package (Geant4 REQUIRED)
endif ()
(3)
include (${Geant4_USE_FILE})
include_directories (${PROJECT_SOURCE_DIR}/include)
(4)
file (GLOB sources ${PROJEC SOURCE_DIR}/src/*.cc)
file (GLOB headers ${PROJECT_SOURCE_DIR}/include/=*.hh)
(5)
add_executable (exampleBl exampleBl.cc ${sources} ${headers})
target_link libraries (exampleBl ${Geant4 LIBRARIESY})

(6)

set (EXAMPLEB1_SCRIPTS
exampleBl.in
exampleBl.out
init_vis.mac
runl.mac
run2.mac
vis.mac

)

foreach (_script S${EXAMPLEE SCRIPTS})
configure_file(
${PROJECT_SOURCE_DIR}/${_script}
${PROJECT_BINARY_DIR}/${_script}
COPYONLY
)

endforeach ()

(7)
install (TARGETS exampleBl DESTINATION bin)

For clarity, the above listing has stripped out the main comments (CMake comments begin with a “#”) you’ll find in
the actual file to highlight each distinct task:

1. Basic Configuration
The cmake_minimum_required command and if block simply ensures we’re using a suitable version of
CMake and that it has been setup appropriately. The project command sets the name of the project and
enables and configures C and C++ compilers.

2. Find and Configure Geant4

34 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

The aforementioned find_package command is used to locate and configure Geant4 (we’ll see how to spec-
ify the location later when we run CMake), the REQUIRED argument being supplied so that CMake will fail with
an error if it cannot find Geant4. The opt i on command specifies a boolean variable which defaults to ON, and
which can be set when running CMake via a -D command line argument, or toggled in the CMake GUI inter-
faces. We wrap the calls to find_package in a conditional block on the option value. This allows us to con-
figure the use of Geant4 Ul and Visualization drivers by exampleB1 via the ui_all vis_all “component”
arguments to find_package. An overview of available components is provided Use of Geant4 Config.cmake
with find_package in CMake with a full listing at the top of the installed Geant4Config. cmake file.

3. Configure the Project to Use Geant4 and B1 Headers
To automatically configure the header path, and force setting of compiler flags and compiler definitions needed
for compiling against Geant4, we use the include command to load a CMake script supplied by Geant4.
The CMake variable named Geant4_USE_FILE is set to the path to this module when Geant4 is located by
find_package. We use the include_directories command to add the B1 header directory to the
compiler’s header search path. The CMake variable PROJECT__SOURCE_DIR points to the top level directory
of the project and is set by the earlier call to the project command.

4. List the Sources to Build the Application
Use the globbing functionality of the £i1le command to prepare lists of the B1 source and header files.
Note however that CMake globbing is only used here as a convenience. The expansion of the glob only
happens when CMake is run, so if you later add or remove files, the generated build scripts will not know a
change has taken place. Kitware strongly recommend listing sources explicitly as CMake automatically
makes the build depend on the CMakeLists.txt file. This means that if you explicitly list the sources in
CMakeLists.txt, any changes you make will be automatically picked up when you rebuild. This is also
useful when you are working on a project with sources under version control and multiple contributors to ensure
traceability and consistent builds.

5. Define and Link the Executable
The add_executable command defines the build of an application, outputting an executable named by its
first argument, with the sources following. Note that we add the headers to the list of sources so that they will
appear in IDEs like Xcode.
After adding the executable, we use the target_link_libraries command to link it with the Geant4
libraries. The Geant4_LIBRARIES variable is set by find_package when Geant4 is located, and is a list
of all the libraries needed to link against to use Geant4.

6. Copy any Runtime Scripts to the Build Directory
Because we want to support out of source builds so that we won’t mix CMake generated files with our actual
sources, we copy any scripts used by the B1 application to the build directory. We use foreach to loop over
the list of scripts we constructed, and configure_file to perform the actual copy.
Here, the CMake variable PROJECT_BINARY_DIR is set by the earlier call to the project command and
points to the directory where we run CMake to configure the build.

7. If Required, Install the Executable
Use the install command to create an install target that will install the executable to a bin directory under
CMAKE_INSTALL_PREFIX.
If you don’t intend your application to be installable, i.e. you only want to use it locally when built, you can
leave this out.

This sequence of commands is the most basic needed to compile and link an application with Geant4, and is easily
extendable to more involved use cases such as platform specific configuration or using other third party packages (via
find_package).

With the CMake script in place, using it to build an application is a two step process. First CMake is run to generate
buildscripts to describe the build. By default, these will be Makefiles on Unix platforms, and Visual Studio solutions
on Windows, but you can generate scripts for other tools like Xcode and Eclipse if you wish. Second, the buildscripts
are run by the chosen build tool to compile and link the application.

A key concept with CMake is that we generate the buildscripts and run the build in a separate directory, the so-called
build directory, from the directory in which the sources reside, the so-called source directory. This is the exact same
technique we used when building Geant4 itself. Whilst this may seem awkward to begin with, it is a very useful

2.8. How to Make an Executable Program 35

https://cmake.org/cmake/help/v3.16/command/if.html
https://cmake.org/cmake/help/v3.8/manual/cmake-generators.7

Book For Application Developers, Release 11.0

technique to employ. It prevents mixing of CMake generated files with those of your application, and allows you to
have multiple builds against a single source without having to clean up, reconfigure and rebuild.

We’ll illustrate this configure and build process on Linux/macOS using Makefiles, and on Windows using Visual
Studio. The example script and Geant4’s Geant 4Config.cmake script are vanilla CMake, so you should be able
to use other Generators (such as Xcode and Eclipse) without issue.

Building ExampleB1 with CMake on Unix with Makefiles

We’ll assume, for illustration only, that you’ve copied the exampleB1 sources into a directory under your home area
so that we have:

+- /home/you/Bl/
+- CMakeLists.txt
+- exampleBl.cc
+- include/
+- src/

Here, our source directory is /home/you/B1, in other words the directory holding the CMakeLists. txt file.

Let’s also assume that you have already installed Geant4 in your home area under, for illustration only, /home /you/
geant4-install.

Our first step is to create a build directory in which build the example. We will create this alongside our B1 source
directory as follows:

$ cd SHOME
$ mkdir Bl-build

We now change to this build directory and run CMake to generate the Makefiles needed to build the B1 application.
We pass CMake two arguments

$ cd $HOME/Bl-build
$ cmake -DGeant4_ DIR=/home/you/geant4-install/lib64/Geant4-G4VERSION $HOME/B1

Here, the first argument points CMake to our install of Geant4. Specifically, it is the directory holding the
Geant4Config.cmake file that Geant4 installs to help CMake find and use Geant4. You should of course adapt
the value of this variable to the location of your actual Geant4 install. This provides the most specific way to point
CMake to the Geant4 install you want to use. You may also use the CMAKE_PREFIX_PATH variable, e.g:

$ cd S$HOME/Bl-build
$ cmake -DCMAKE_PREFIX_PATH=/home/you/geant4-install SHOME/B1

This is most useful for system integrators as it may be extended via the environment or command line with paths to
the install prefixes of additional required software packages.

The second argument to CMake is the path to the source directory of the application we want to build. Here it’s just
the B1 directory as discussed earlier. You should of course adapt the value of that variable to where you copied the B1
source directory.

CMake will now run to configure the build and generate Makefiles and you will see output similar to

$ cmake -DGeant4_DIR=/home/you/geant4-install/1ib64/Geant4-G4VERSION $HOME/B1
—— The C compiler identification is GNU 9.3.0

—— The CXX compiler identification is GNU 9.3.0

—— Check for working C compiler: /usr/bin/gcc-9

—— Check for working C compiler: /usr/bin/gcc-9 —-— works

—— Detecting C compiler ABI info

-— Detecting C compiler ABI info - done

(continues on next page)

36 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

(continued from previous page)

—— Detecting C compile features

—— Detecting C compile features - done
—— Check for working CXX compiler: /usr/bin/g++-9
—— Check for working CXX compiler: /usr/bin/g++-9 —-- works

—— Detecting CXX compiler ABI info

—-— Detecting CXX compiler ABI info - done

—— Detecting CXX compile features

—— Detecting CXX compile features - done

—— Configuring done

—— Generating done

—— Build files have been written to: /home/you/Bl-build

The exact output will depend on the UNIX variant, compiler, and CMake version but the last three lines should be
identical to within the exact path used.

If you now list the contents of you build directory, you can see the files generated:

$ 1s

CMakeCache.txt exampleBl.in Makefile vis.mac
CMakeFiles exampleBl.out runl.mac
cmake_install.cmake init_vis.mac run2.mac

Note the Makefile and that all the scripts for running the exampleB1 application we’re about to build have been
copied across. With the Makefile available, we can now build by simply running make:

$ make —-jN

CMake generated Makefiles support parallel builds, so N can be set to the number of cores on your machine (e.g. on a
dual core processor, you could set N to 2). When make runs, you should see the output:

$ make

Scanning dependencies of target exampleBl

[12%] Building CXX object Bl/CMakeFiles/exampleBl.dir/exampleBl.cc.o

[] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/ActionInitialization.cc.o
[] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/DetectorConstruction.cc.o
[50%] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/EventAction.cc.o

[] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/PrimaryGeneratorAction.cc.o
[75%] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/RunAction.cc.o

[] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/SteppingAction.cc.o
[100%] Linking CXX executable exampleBl

[] Built target exampleBl

CMake Unix Makefiles are quite terse, but you can make them more verbose by adding the VERBOSE argument to
make:

$ make VERBOSE=1

If you now list the contents of your build directory you will see the exampleB 1 application executable has been created:

$ 1s
CMakeCache.txt exampleBl init_vis.mac run2.mac
CMakeFiles exampleBl.in Makefile vis.mac

cmake_install.cmake exampleBl.out runl.mac

You can now run the application in place:

$./exampleBl
Available UI session types: [GAG, tcsh, csh |

Ak hkhkhkhkhkhhkhkhdhhhkhkhkhkhkhhhdhhrdhhkhhkhkhkhkhrhhhhrdhhkhkhkkhkhkdkhrdhhkhrhhkhhkkxkhkhxk
Geant4 version Name: geant4-11-00 [MT] (3-December-2021)

(continues on next page)

2.8. How to Make an Executable Program 37

Book For Application Developers, Release 11.0

(continued from previous page)

<< in Multi-threaded mode >>
Copyright : Geant4 Collaboration
References : NIM A 506 (2003), 250-303
: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225
WWW : http://geant4.org/

B T L R e R S e

<<< Reference Physics List QOBBC

Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...

Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further output
and behaviour beyond the Registering graphics systems. .. line will depend on what UI and Visualiza-
tion drivers your Geant4 install supports. If you recall the use of the ui_all vis_all in the find_package
command, this results in all available UI and Visualization drivers being activated in your application. If you didn’t
want any Ul or Visualization, you could rerun CMake in your build directory with arguments:

$ cmake -DWITH_GEANT4_UIVIS=OFF .

This would switch the opt 1on we set up to false, and result in find_package not activating any Ul or Visualiza-
tion for the application. You can easily adapt this pattern to provide options for your application such as additional
components or features.

Once the build is configured, you can edit code for the application in its source directory. You only need to rerun
make in the corresponding build directory to pick up and compile the changes. However, note that due to the use of
CMake globbing to create the source file list, if you add or remove files, you must remember to rerun CMake to pick
up the changes. This is another reason why Kitware recommend listing the sources explicitly.

Building ExampleB1 with CMake on Windows with Visual Studio

As with building Geant4 itself, the simplest system to use for building applications on Windows is a Visual Studio
Developer Command Prompt, which can be started from Start — Visual Studio 2017 — Developer Command Prompt
Sfor V§2017 (similarly for VS2015)

We’ll assume, for illustration only, that you’ve copied the exampleBl sources into a directory C:\Users\
YourUsername\B1 so that we have:

+— C:\Users\YourUsername\B1
+- CMakeLists.txt
+- exampleBl.cc
+- include\
= @Ee

Here, our source directory is C:\Users\YourUsername\B1, in other words the directory holding the
CMakelists.txt file.

Let’s also assume that you have already installed Geant4 in your home area under, for illustration only, C : \Users\
YourUsername\Geant4-install.

Our first step is to create a build directory in which build the example. We will create this alongside our B1 source
directory as follows, working from the Visual Studio Developer Command Prompt:

> cd $HOMEPATHS%
> mkdir Bl-build

38 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

We now change to this build directory and run CMake to generate the Visual Studio solution needed to build the B1
application. We pass CMake two arguments

> cd %$HOMEPATH%\Geant4\Bl-build
> cmake -DGeant4_DIR="%HOMEPATH%\Geant4-install\lib\Geant4-G4VERSION" "
—%$HOMEPATH%\B1"

Here, the first argument points CMake to our install of Geant4. Specifically, it is the directory holding the
Geant4Config.cmake file that Geant4 installs to help CMake find and use Geant4. You should of course adapt
the value of this variable to the location of your actual Geant4 install. As with the examples above, you can also use
the CMAKE_PREFIX_ PATH variable. The second argument is the path to the source directory of the application we
want to build. Here it’s just the B1 directory as discussed earlier. You should of course adapt it to where you copied
the B1 source directory. In both cases the arguments are quoted in case of the paths containing spaces.

CMake will now run to configure the build and generate Visual Studio solutions and you will see output similar to

Building for: Visual Studio 15 2017
—— The C compiler identification is MSVC 19.11.25547.0
~— The CXX compiler identification is MSVC 19.11.25547.0
—— Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe
—— Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
«—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe —— works
—— Detecting C compiler ABI info
—— Detecting C compiler ABI info - done
—— Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe
—— Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe —— works
—— Detecting CXX compiler ABI info
—— Detecting CXX compiler ABI info - done
—— Detecting CXX compile features
—— Detecting CXX compile features - done
—— Configuring done
—— Generating done
—— Build files have been written to: C:/Users/YourUsername/Bl-build

If you now list the contents of you build directory, you can see the files generated:

> dir /B
ALL_BUILD.vCXpProj
ALL_BUILD.vcxproj.filters
Bl.sln

Bl.vcxproj
Bl.vcxproj.filters
CMakeCache.txt

CMakeFiles
cmake_install.cmake
exampleBl.in
exampleBl.out
exampleBl.vcxproj
exampleBl.vcxproj.filters
init_vis.mac
INSTALL.vCXpProj
INSTALL.vcxproj.filters
runl.mac

run2.mac

vis.mac
ZERO_CHECK.vcxproj
ZERO_CHECK.vcxproj.filters

Note the B1 . s 1n solution file and that all the scripts for running the exampleB1 application we’re about to build have
been copied across. With the solution available, we can now build by running cmake to drive MSBuild:

2.8. How to Make an Executable Program 39

Book For Application Developers, Release 11.0

> cmake --build . --config Release

Solution based builds are quite verbose, but you should not see any errors at the end. In the above, we have built the
B1 program in Release mode, meaning that it is optimized and has no debugging symbols. As with building Geant4
itself, this is chosen to provide optimum performance. If you require debugging information for your application,
simply change the argument to RelWithDebInfo. Note that in both cases you must match the configuration of
your application with that of the Geant4 install, i.e. if you are building the application in Release mode, then ensure
it uses a Release build of Geant4. Link and/or runtime errors may result if mixed configurations are used.

After running the build, if we list the contents of the build directory again we see:

> dir /B
ALL_BUILD.vVCXpProj
ALL_BUILD.vcxproj.filters
Bl.sln

Bl.vcxproj
Bl.vcxproj.filters
CMakeCache.txt

CMakeFiles
cmake_install.cmake
exampleBl.dir
exampleBl.in
exampleBl.out
exampleBl.vcxproj
exampleBl.vcxproj.filters
init_vis.mac
INSTALL.vCXproj
INSTALL.vcxproj.filters
Release

runl.mac

run2.mac

vis.mac

Win32

ZERO_CHECK.vcxproj
ZERO_CHECK.vcxproj.filters

> dir /B Release
exampleBl.exe

Here, the Release subdirectory contains the executable, and the main build directory contains all the .mac scripts
for running the program. If you build in different modes, the executable for that mode will be in a directory named for
that mode, e.g. RelWithDebInfo/exampleBl.exe. You can now run the application in place:

> .\Release\exampleBl.exe

R R R o R S R e

Geant4 version Name: geant4-11-00 [MT] (3-December-2020)
<< in Multi-threaded mode >>
Copyright : Geant4 Collaboration

References : NIM A 506 (2003), 250-303
: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225
WWW : http://geant4.org/

Kk Kk k ok ke k ok kK kK ok ok ok k ks ks k sk ok ok ok ok ok ke ok ok sk ok sk ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke ok ko ko ok ok ok ok ok ok

<<< Reference Physics List OBBC

Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...

Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further
output and behaviour beyond the Registering graphics systems. .. line will depend on what Ul and Vi-
sualization drivers your Geant4 install supports.

40 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

Whilst the Visual Studio Developer Command prompt provides the simplest way to build an application, the generated
Visual Studio Solution file (B1 . s 1n in the above example) may also be opened directly in the Visual Studio IDE. This
provides a more comprehensive development and debugging environment, and you should consult its documentation
if you wish to use this.

One key CMake related item to note goes back to our listing of the headers for the application in the call to
add_executable. Whilst CMake will naturally ignore these for configuring compilation of the application, it
will add them to the Visual Studio Solution. If you do not list them, they will not be editable in the Solution in the
Visual Studio IDE.

2.8.2 Use of Geant4Config.cmake with £ind_package in CMake

The Geant4Config.cmake file installed by Geant4 is designed to be used with CMake’s find_package command.
CMake will search for the file using the Geant 4_DIR variable described above, plus a standard set of paths used by
find_package.

When found, it sets several CMake variables and provides a mechanism for checking and activating optional features
of Geant4 if your application requires these. The simplest possible usage of £ind_package and these variables to
configure an application or library requiring Geant4 is:

find_package (Geant4 REQUIRED) # Find Geant4
add_executable (myg4app myg4app.cc) # Compile application
target_link_ libraries (mygdapp ${Geant4 LIBRARIES}) # Link it to Geant4

The Geant4_LIBRARIES variable holds the list of CMake Imported Targets for the Geant4 libraries. These set and
propagate all Usage Requirements of Geant4 to the consuming target(s) (the myg4app executable in the above).

The minimal example just requires that a Geant4 install be found. A version number may be supplied to search for an
install greater than or equal to the supplied version, e.g.

find_package (Geant4 10.0 REQUIRED)
makes CMake search for a Geant4 install whose version number is greater than or equal to 10.0. An exact version
number may also be specified:

find_package (Geant4 10.4.0 EXACT REQUIRED)

In both cases, CMake will fail with an error if a Geant4 install meeting these version requirements is not found.

Geant4 can be installed with many optional components, and the presence of these can also be required and activated
by passing extra “component” arguments. For example, to require that Geant4 is found and that it has support for
gdml and Qt:

find_package (Geant4 REQUIRED gdml gt)

which will fail if the found install was not built with these options. If you want to activate components only if they
exist, you can use the pattern

find_package (Geant4 REQUIRED)
find_package (Geant4 QUIET OPTIONAL_COMPONENTS qt)

which will require CMake to locate a core install of Geant4, and then check for and activate Qt support if the install
provides it, continuing without error otherwise. A key thing to note here is that you can call find_package multiple
times to append configuration of components. If you use this pattern and need to check if a component was found, you
can use the Geant 4_ <COMPONENTNAME>_FOUND variables which are set after the call to find_package.

Some components are “passive” in that they just indicate support is available, others are “active” in that they indicate
support for and activate use of the component in the application linking to the targets in Geant4_LIBRARIES. A

2.8. How to Make an Executable Program 41

https://cmake.org/cmake/help/v3.16/command/find_package.html
https://cmake.org/cmake/help/v3.16/command/find_package.html
https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#imported-targets
https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#build-specification-and-usage-requirements

Book For Application Developers, Release 11.0

partial list of the most useful components and their behaviour is given below, but for a full list, please see the listing in
the installed Geant4Config. cmake file.

multithreaded

Geant4_multithreaded_ FOUND is TRUE if the install of Geant4 was built with multithreading support.
Note that this is a passive option and only indicates availability of multithreading support! Multithreading
in your application code requires creation and usage of the appropriate C++ objects and interfaces as
described in this guide.

gdml

Geant4_gdml_FOUND is TRUE if the install of Geant4 was built with GDML support.

Note that this is a passive option, and indicates support for GDML is availble in the found install.

ui_all

Activates all available Ul drivers. Does not set any variables, and never causes CMake to fail. It is recommended
to use this over specific Ul drivers unless your application has strong requirements.

vis_all

Activates all available Visualization drivers. Does not set any variables, and never causes CMake to fail. It is
recommended to use this over specific Vis drivers unless your application has strong requirements.

ui_tcsh

Geant4_ui_tcsh_FOUND is TRUE if the install of Geant4 provides the TCsh command line User Interface.
Using this component activates and allows use of the TCsh command line interface in the linked application.
ui_win32

Geant4_ui_win32_FOUND is TRUE if the install of Geant4 provides the Win32 command line User In-
terface. Using this component activates and allows use of the Win32 command line interface in the linked
application.

motif

Geant4_motif_ FOUND is TRUE if the install of Geant4 provides the Motif(Xm) User Interface and Visu-
alization driver. Using this component activates and allows use of the Motif User Interface and Visualization
Driver in the linked application.

gt

Geant4_qgt_FOUND is TRUE if the install of Geant4 provides the Qt User Interface and Visualization driver.
Using this component activates and allows use of the Qt User Interface and Visualization Driver in the linked
application.

vis_raytracer_x11

Geant4_vis_raytracer_x11_FOUND is TRUE if the install of Geant4 provides the X11 interface to the
RayTracer Visualization driver. Using this component activates and allows use of the RayTracer X11 Visualiza-
tion Driver in the linked application.

vis_opengl_x11

Geant4_vis_opengl_x11_FOUND is TRUE if the install of Geant4 provides the X11 interface to the
OpenGL Visualization driver. Using this component activates and allows use of the X11 OpenGL Visualization
Driver in the linked application.

vis_opengl_win32

Geant4_vis_opengl_win32_FOUND is TRUE if the install of Geant4 provides the Win32 interface to the
OpenGL Visualization driver. Using this component activates and allows use of the Win32 OpenGL Visualiza-
tion Driver in the linked application.

vis_openinventor

Geant4_vis_openinventor_FOUND is TRUE if the install of Geant4 provides the Openlnventor Visual-
ization driver. Using this component activates and allows use of the Openlnventor Visualization Driver in the
linked application.

vis_toolssg_x11_gles

Geant4_vis_toolssg_x11_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-
ization driver with X11 backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

vis_toolssg_xt_gles

Geant4_vis_toolssg_xt_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-

42

Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

ization driver with Motif backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

* vis_toolssg_gt_gles
Geant4_vis_toolssg_gt_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-
ization driver with Qt5 backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

* vis_toolssg_windows_gles
Geant4_vis_toolssg_windows_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG
visualization driver with Windows backend. Using this component allows use of the ToolsSG Visualization
Driver in the linked application.

e vis_Vtk
Geant4_vis_Vtk_FOUND is TRUE if the install of Geant4 provides the Vtk visualization driver. Using this
component allows use of the Vtk Visualization Driver in the linked application.

2.9 How to Set Up an Interactive Session

2.9.1 Introduction

Roles of the “intercoms” category

The “intercoms” category provides an expandable command interpreter. It is the key mechanism of GEANT4 to
realize secure user interactions across categories without being annoyed by dependencies among categories. GEANT4
commands can be used in an interactive session, a batch mode with a macro file, or a direct C++ call.

User Interfaces to drive the simulation

GEANT4 can be controlled by a series of GEANT4 Ul commands. The “intercoms” category provides the abstract class
G4UIsession that processes interactive commands. The concrete implementations of (graphical) user interface are
provided in the “interfaces” category. The strategy realize to adopt various user interface tools, and allows GEANT4 to
utilize the state-of-the-art GUI tools such as Motif, Qt, and Java etc. The following interfaces is currently available;

1. Command-line terminal (dumb terminal and tcsh-like terminal)
2. Xm, Qt, Win32, variations of the above terminal by using a Motif, Qt, Windows widgets
3. GAG, a fully graphical user interface and its network extension GainServer of the client/server type.

Implementation of the user sessions (1 and 2) is included in the source/interfaces/basic directory. As for
GAGQ, the front-end class is included in the source/interfaces/GAG directory, while its partner GUI package
MOMO jar is available under the environments/MOMO directory. MOMO jar, Java archive file, contains not only
GAG, but also GGE and other helper packages.

2.9.2 A Short Description of Available Interfaces

G4UIterminal

This interface opens a session on a command-line terminal. G4UIterminal runs on all supported platforms. There
are two kinds of shells, G4UIcsh and G4UItcsh. G4UItcsh supports tcsh-like readline features (cursor and
command completion) and works on Linux on Mac, while G4UIcsh is a plain standard input (cin) shell that works
on all platforms. The following built-in commands are available in G4UIterminal;

cd, pwd change, display the current command directory.
Is, Ic list commands and subdirectories in the current directory.
history show previous commands.

2.9. How to Set Up an Interactive Session 43

Book For Application Developers, Release 11.0

thistoryID reissue previous command.

?command show current parameter values of the command.
help command show command help.

exit terminate the session.

G4Ultcsh supports user-friendly key bindings a-la-tcsh. G4UItcsh runs on Linux and Mac. The following keybind-
ings are supported;

AA move cursor to the top

AB backward cursor ([LEFT] cursor)

AC (except Windows terminal) abort a run (soft abort) during event processing. A program will be terminated
while accepting a user command.

AD delete/exit/show matched list

AE move cursor to the end

AF forward cursor ([RIGHT] cursor)

AK clear after the cursor

AN next command ([DOWN] cursor)

AP previous command ([UP] cursor)

TAB command completion

DEL backspace

BS backspace

The example below shows how to set a user’s prompt.

G4UItcshx tcsh = new G4UItcsh();
tcsh-> SetPrompt ("$s>");

The following strings are supported as substitutions in a prompt string.

%s current application status
%! current working directory
%h history number

Command history in a user’s session is saved in a file $ (HOME) /.g4_hist that is automatically read at the next
session, so that command history is available across sessions.

G4UIXm, GAUIQt and G4UIWin32 classes

These interfaces are versions of G4UIterminal implemented over libraries Motif, Qt and WIN32 respectively.
G4UIXm uses the Motif XmCommand widget, G4UIOQt the Qt dialog widget, and G4UIWin32 the Windows “edit”
component to do the command capturing. These interfaces are useful if working in conjunction with visualization
drivers that use the Xt library, Qt library or the WIN32 one.

A command box is at disposal for entering or recalling GEANT4 commands. Command completion by typing “TAB”
key is available in the command box. The shell commands “exit, cont, help, Is, cd...” are also supported. A menu bar
can be customized through the AddMenu and AddButton method. Ex:

/gui/addMenu test Test

/gui/addButton test Init /run/initialize

/gui/addButton test “Set gun” “/control/execute gun.g4m”
/gui/addButton test “Run one event” “/run/beamOn 1”

GAUIXm runs on Unix/Linux with Motif. G4UIQt run everywhere with Qt. GAUIWin32 runs on Windows.

44 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

G4UIGAG and G4UIGainServer classes

They are front-end classes of GEANT4 which make connections with their respective graphical user interfaces, GAG
(GEANT4 Adaptive GUI) via pipe, and Gain (GEANT4 adaptive interface for network) via sockets. While GAG must
run on the same system (Windows or Unixen) as a GEANT4 application, Gain can run on a remote system (Windows,
Linux, etc.) in which JRE (Java Runtime Environment) is installed. A GEANT4 application is invoked on a Unix
(Linux) system and behaves as a network server. It opens a port, waiting the connection from the Gain. Gain has
capability to connect to multiple GEANT4 “servers” on Unixen systems at different hosts.

Client GUIs, GAG and Gain have almost similar look-and-feel. So, GAG’s functionalities are briefly explained here.
Please refer to the URL previously mentioned for details.

Using GAG, user can select a command, set its parameters and execute it. It is adaptive, in the sense that it reflects
the internal states of GEANT4 that is a state machine. So, GAG always provides users with the GEANT4 commands
which may be added, deleted, enabled or disabled during a session. GAG does nothing by itself but to play an
intermediate between user and an executable simulation program via pipes. GEANT4‘s front-end class GAUIGAG
must be instantiated to communicate with GAG. GAG runs on Linux and Windows. MOMO . jar is supplied in the
GEANT4 source distribution and can be run by a command:

%java —jar /path/to/geant4.10.00/environments/MOMO/MOMO. jar

GAG has following functions.

GAG Menu: The menus are to choose and run a GEANT4 executable file, to kill or exit a GEANT4 process and to exit
GAG. Upon the normal exit or an unexpected death of the GEANT4 process, GAG window are automatically
reset to run another GEANT4 executable.

GEANT4 Command tree: Upon the establishment of the pipe connection with the GEANT4 process, GAG displays
the command menu, using expandable tree browser whose look and feel is similar to a file browser. Disabled
commands are shown in opaque. GAG doesn’t display commands that are just below the root of the command
hierarchy. Direct type-in field is available for such input. Guidance of command categories and commands
are displayed upon focusing. GAG has a command history function. User can re-execute a command with old
parameters, edit the history, or save the history to create a macro file.

Command Parameter panel: GAG’s parameter panel is the user-friendliest part. It displays parameter name, its
guidance, its type(s) (integer, double, Boolean or string), omittable, default value(s), expression(s) of its range
and candidate list(s) (for example, of units). Range check is done by intercoms and the error message from it is
shown in the pop-up dialog box. When a parameter component has a candidate list, a list box is automatically
displayed . When a file is requested by a command, the file chooser is available.

Logging: Log can be redirected to the terminal (xterm or cygwin window) from which GAG is invoked. It can be
interrupted as will, in the middle of a long session of execution. Log can be saved to a file independent of the
above redirection . GAG displays warning or error messages from GEANT4 in a pop-up warning widget.

2.9.3 How to Select Interface in Your Applications

To choose an interface (G4UIxxx where xxx = terminal,Xm, Win32, Qt, GAG, GainServer)inyour
programs, there are two ways.

* Calling G4UIxxx directly:
#include "G4Uixxx.hh"

G4UIsession* session = new G4UIxxx;
session—-> SessionStart ();

delete session;

Note: For using a tcsh session, G4UIterminal is instantiated like:

2.9. How to Set Up an Interactive Session 45

Book For Application Developers, Release 11.0

G4UIsession* session = new G4UIterminal (new G4UItcsh);

If the user wants to deactivate the default signal handler (soft abort) raised by “Ctr-C”, the false flag can be set
in the second argument of the G4UIterminal constructor like

G4UIsession* session = new G4UIterminal (new G4UItcsh, false).

» Using G4UIExecutive This is more convenient way for choosing a session type, that can select a session at
run-time according to a rule described below.

#include "G4UIExecutive.hh"

G4UIExecutivex ui = new G4UIExecutive (argc, argv);
ui->SessionStart () ;

delete ui;

G4UIExecutive has several ways to choose a session type. A session is selected in the following rule. Note that

session types are identified by a case-insensitive characters (“qt”, “xm”, “win32”, “gag”, “tcsh”, “csh”).

1. Check the argument of the constructor of G4UIExecutive. = You can specify a session like new
G4UIExecutive (argc, argv, "gt");

2. Check environment variables, G4UI_USE_XX (XX= QT, XM, WIN32, GAG, TCSH). Select a session
if the corresponding environment variable is defined. Variables are checked in the order of QT, XM, WIN32,
GAG, TCSH if multiple variables are set.

3. Check ~/.g4session . You can specify the default session type and a session type by each application in
that file. The below shows a sample of .g4session.

tcsh # default session
exampleNO3 Qt # (application name / session type)
myapp tcsh
hoge csh
4. Guess the best session type according to build session libraries. The order of the selection is Qt, tcsh, Xm.

In any cases, G4UIExecutive checks if a specified session is build or not. If not, it goes the next step. A terminal
session with csh is the fallback session. If none of specified session is available, then it will be selected.

2.10 How to Execute a Program

2.10.1 Introduction

A GEANT4 application can be run either in

* ‘purely hard-coded’ batch mode

¢ batch mode, but reading a macro of commands
* interactive mode, driven by command lines

* interactive mode via a Graphical User Interface

The last mode will be covered in How fo Set Up an Interactive Session. The first three modes are explained here.

46 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

2.10.2 ‘Hard-coded’ Batch Mode
Below is a modified main program of the basic example B1 to represent an application which will run in batch mode.

Listing 2.19: An example of the main () routine for an application
which will run in batch mode.

using namespace Bl;

int main ()

{
// Construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// Set mandatory initialization classes
runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager—>Initialize();

// start a run
int numberOfEvent = 1000;
runManager—>BeamOn (numberOfEvent) ;

// job termination
delete runManager;
return 0;

Even the number of events in the run is ‘frozen’. To change this number you must at least recompile main ().

2.10.3 Batch Mode with Macro File

Below is a modified main program of the basic example B1 to represent an application which will run in batch mode,
but reading a file of commands.

Listing 2.20: An example of the main () routine for an application
which will run in batch mode, but reading a file of commands.

using namespace BIl;

int main (int argc,char+* argv)
{
// Construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// Set mandatory initialization classes
runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager—>Initialize();

//read a macro file of commands

G4UImanager* UI = G4UImanager: :GetUIpointer();
G4String command = "/control/execute ";
G4String fileName = argv[l];

UI->ApplyCommand (command+fileName) ;

(continues on next page)

2.10. How to Execute a Program 47

Book For Application Developers, Release 11.0

(continued from previous page)

// job termination
delete runManager;
return 0;

}

This example will be executed with the command:

> exampleBl runl.mac

where exampleB1 is the name of the executable and runl.mac is a macro of commands located in the current
directory, which could look like:

Listing 2.21: A typical command macro.

#

Macro file for myProgram

#

set verbose level for this run

#

/run/verbose 2

/event /verbose 0

/tracking/verbose 1

#

Set the initial kinematic and run 100 events
electron 1 GeV to the direction (1.,0.,0.)
#

/gun/particle e-

/gun/energy 1 GeV

/run/beamOn 100

Indeed, you can re-execute your program with different run conditions without recompiling anything.

Note: many G4 category of classes have a verbose flag which controls the level of ‘verbosity’.
Usually verbose=0 means silent. For instance

e /run/verbose is for the RunManager

e /event/verbose is for the EventManager

e /tracking/verbose is for the TrackingManager
e ...etc...

2.10.4 Interactive Mode Driven by Command Lines

Below is an example of the main program for an application which will run interactively, waiting for command lines
entered from the keyboard.

Listing 2.22: An example of the main () routine for an application
which will run interactively, waiting for commands from the keyboard.

using namespace Bl;

int main (int argc,charxx argv)

{
// Construct the default run manager
G4RunManager* runManager = new G4RunManager;

// Set mandatory initialization classes
(continues on next page)

48 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager->Initialize();

// Define UI terminal for interactive mode
G4UIsession * session = new G4UIterminal;
session—->SessionStart () ;

delete session;

// job termination

delete runManager;
return O;

This example will be executed with the command:

> exampleBl

where exampleB1 is the name of the executable.
The G4 kernel will prompt:

Idle>

and you can start your session. An example session could be:
Run 5 events:

Idle> /run/beamOn 5

Switch on tracking/verbose and run one more event:

Idle> /tracking/verbose 1
Idle> /run/beamOn 1

Change primary particle type an run more events:

Idle> /gun/particle mu+
Idle> /gun/energy 10 GeV
Idle> /run/beamOn 1

Idle> /gun/particle proton
Idle> /gun/energy 100 MeV
Idle> /run/beamOn 3

Idle> exit

For the meaning of the machine state Id1le, see as a state machine.

(continued from previous page)

This mode is useful for running a few events in debug mode and visualizing them. How to include visualization will

be shown in the next, general case, example.

2.10. How to Execute a Program

49

Book For Application Developers, Release 11.0

2.10.5 General Case

All basic examples in the examples/basic subdirectory of the GEANT4 source distribution have the following
main () structure. The application can be run either in batch or interactive mode.

Listing 2.23: The typical main () routine from the examples directory.

Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

Listing 2.24: The init .mac macro

The init_vis.mac macro has just added a line with a call to vis.mac:

The vis.mac macro defines a minimal setting for drawing volumes and trajectories accumulated for all events of a
given run:

Also, this example demonstrates that you can read and execute a macro from another macro or interactively:

2.10. How to Execute a Program 51

Book For Application Developers, Release 11.0

2.11 How to Visualize the Detector and Events

2.11.1 Introduction

This section briefly explains how to perform GEANT4 Visualization. The description here is based on the sample
program examples/basic/B1l. More details are given in Visualization.

2.11.2 Visualization Drivers

The GEANT4 visualization system was developed in response to a diverse set of requirements:

Quick response to study geometries, trajectories and hits
High-quality output for publications

Flexible camera control to debug complex geometries

Tools to show volume overlap errors in detector geometries
Interactive picking to get more information on visualized objects

Nk L=

No one graphics system is ideal for all of these requirements, and many of the large software frameworks into which
GEANT4 has been incorporated already have their own visualization systems, so GEANT4 visualization was designed
around an abstract interface that supports a diverse family of graphics systems. Some of these graphics systems use
a graphics library compiled with GEANT4, such as OpenGL, Qt or Openlnventor, while others involve a separate
application, such as HepRApp or DAWN.

You need not use all visualization drivers. You can select those suitable to your purposes. In the following, for
simplicity, we assume that the GEANT4 libraries are built with the Qt driver.

If you build GEANT4 using the standard CMake procedure, you include Qt by setting GEANT4_USE_QT to ON.

In order to use the the Qt driver, you need the OpenGL library, which is installed in many platforms by default and
CMake will find it. (If you wish to “do-it-yourself”, see Installing Visualization Drivers.) The makefiles then set
appropriate C-pre-processor flags to select appropriate code at compilation time.

If you are using multithreaded mode, from GEANT4 version 10.2 event drawing is performed by a separate thread and
you may need to optimise this with special /vis/multithreading commands - see Multithreading commands.

2.11.3 How to Incorporate Visualization Drivers into an Executable

Most GEANT4 examples already incorporate visualization drivers. If you want to include visualization in your own
GEANT4 application, you need to instantiate and initialize a subclass of G4VisManager that implements the pure
virtual function RegisterGraphicsSystems ().

The provided class G4VisExecutive can handle all of this work for you. G4VisExecutive is sensitive to the
G4VIS_. .. variables (that you either set by hand or that are set for you by GNUMake or CMake configuration). See
any of the GEANT4 examples for how to use G4VisExecutive.

If you really want to write your own subclass, rather than use G4VisExecutive, you may do so. You will see how
to do this by looking at G4VisExecutive. icc. This subclass must be compiled in the user’s domain to force the
loading of appropriate libraries in the right order. A typical extract is:

RegisterGraphicsSystem (new G4DAWNFILE) ;

#ifdef G4VIS_USE_OPENGLX
RegisterGraphicsSystem (new G40OpenGLImmediateX);
RegisterGraphicsSystem (new G40OpenGLStoredX) ;
#endif

52 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.0

The G4VisExecutive takes ownership of all registered graphics systems, and will delete them when it is deleted
at the end of the user’s job (see below).

If you wish to use G4VisExecutive but register an additional graphics system, XXX say, you may do so either
before or after initializing:

visManager->RegisterGraphicsSytem (new XXX);
visManager->Initialize();

An example of a typical main () function is given below.

2.11.4 Writing the main () Method to Include Visualization

Now we explain how to write a visualization manager and the main () function for GEANT4 visualization. In order
that your GEANT4 executable is able to perform visualization, you must instantiate and initialize your Visualization
Manager in the main () function. The typical main () function available for visualization is written in the following

style:

Listing 2.25: The typical main () routine available for visualization.

#include "G4VisExecutive.hh"
int main(int argc,char+* argv) {
// Initialize visualization
G4VisManager* visManager = new G4VisExecutive;
// G4VisExecutive can take a verbosity argument - see /vis/verbose guidance.
// G4VisManagerx visManager = new G4VisExecutive ("Quiet");
visManager->Initialize();
// Job termination
delete visManager;

Note that we are here recommending that all jobs instantiate a Visualization Manager. Even in batch mode you may
generate an image using one of the file-writing drivers - DAWNFILE, VRML2FILE, HepRepFile, RayTracer.

Note also that it is your responsibility to delete the Visualization Manager. A good example of amain () function is
examples/basic/Bl/exampleBl.cc.

2.11. How to Visualize the Detector and Events 53

Book For Application Developers, Release 11.0

2.11.5 Sample Visualization Sessions

Most GEANT4 examples include a vis .mac. Run that macro to see a typical visualization. Read the comments in the
macro to learn a little bit about some visualization commands. The vis.mac also includes commented-out optional
visualization commands. By uncommenting some of these you can see additional visualization features.

2.11.6 For More Information on GEANT4 Visualization

See the Visualization part of this user guide.

54 Chapter 2. Getting Started with Geant4 - Running a Simple Example

CHAPTER
THREE

TOOLKIT FUNDAMENTALS

3.1 Class Categories and Domains

3.1.1 What is a class category?

In the design of a large software system such as GEANT4, it is essential to partition it into smaller logical units. This
makes the design well organized and easier to develop. Once the logical units are defined independent to each other
as much as possible, they can be developed in parallel without serious interference.

In object-oriented analysis and design methodology by Grady Booch [Booch1994], class categories are used to create
logical units. They are defined as “clusters of classes that are themselves cohesive, but are loosely coupled relative
to other clusters.” This means that a class category contains classes which have a close relationship (for example, the
“has-a” relation). However, relationships between classes which belong to different class categories are weak, i.e.,
only limited classes of these have “uses” relations. The class categories and their relations are presented by a class
category diagram. The class category diagram designed for GEANT4 is shown in the figure below (Fig. 3.1). Each box
in the figure represents a class category, and a “uses” relation by a straight line. The circle at an end of a straight line
means the class category which has this circle uses the other category.

The file organization of the GEANT4 codes follows basically the structure of this class category. This User’s Manual
is also organized according to class categories.

In the development and maintenance of GEANT4, one software team will be assigned to a class category. This team
will have a responsibility to develop and maintain all classes belonging to the class category.

3.1.2 Class categories in GEANT4

The following is a brief summary of the role of each class category in GEANT4.

1. Run and Event
These are categories related to the generation of events, interfaces to event generators, and any secondary parti-
cles produced. Their roles are principally to provide particles to be tracked to the Tracking Management.

2. Tracking and Track
These are categories related to propagating a particle by analyzing the factors limiting the step and applying the
relevant physics processes. The important aspect of the design was that a generalized GEANT4 physics process
(or interaction) could perform actions, along a tracking step, either localized in space, or in time, or distributed
in space and time (and all the possible combinations that could be built from these cases).

3. Geometry and Magnetic Field
These categories manage the geometrical definition of a detector (solid modeling) and the computation of dis-
tances to solids (also in a magnetic field). The GEANT4 geometry solid modeler is based on the ISO STEP
standard and it is fully compliant with it. A key feature of the GEANT4 geometry is that the volume definitions
are independent of the solid representation. By this abstract interface for the G4 solids, the tracking compo-
nent works identically for various representations. The treatment of the propagation in the presence of fields

55

Book For Application Developers, Release 11.0

N
al
T

DA s
N

Fig. 3.1: Class categories in GEANT4.

has been provided within specified accuracy. An OO design allows to exchange different numerical algorithms
and/or different fields (not only B-field), without affecting any other component of the toolkit.

. Particle Definition and Matter

These two categories manage the the definition of materials and particles.

. Physics

This category manages all physics processes participating in the interactions of particles in matter. The abstract
interface of physics processes allows multiple implementations of physics models per interaction or per channel.
Models can be selected by energy range, particle type, material, etc. Data encapsulation and polymorphism make
it possible to give transparent access to the cross sections (independently of the choice of reading from an ascii
file, or of interpolating from a tabulated set, or of computing analytically from a formula). Electromagnetic and
hadronic physics were handled in a uniform way in such a design, opening up the physics to the users.

. Hits and Digitization

These two categories manage the creation of hits and their use for the digitization phase. The basic design and
implementation of the Hits and Digi had been realized, and also several prototypes, test cases and scenarios
had been developed before the alpha-release. Volumes (not necessarily the ones used by the tracking) are
aggregated in sensitive detectors, while hits collections represent the logical read out of the detector. Different
ways of creating and managing hits collections had been delivered and tested, notably for both single hits and
calorimetry hits types. In all cases, hits collections had been successfully stored into and retrieved from an
Object Data Base Management System.

. Visualization

This manages the visualization of solids, trajectories and hits, and interacts with underlying graphical libraries
(the Visualization class category). The basic and most frequently used graphics functionality had been imple-
mented already by the alpha-release. The OO design of the visualization component allowed us to develop
several drivers independently, such as for OpenGL, Qt and Openlnventor (for X11 and Windows), DAWN,
Postscript (via DAWN) and VRML.

56

Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

8. Interfaces
This category handles the production of the graphical user interface (GUI) and the interactions with external
software (OODBMS, reconstruction etc.).

3.2 Global Usage Classes

The “global” category in GEANT4 collects all classes, types, structures and constants which are considered of general
use within the GEANT4 toolkit. This category also defines the interface with third-party software libraries (CLHEP,
STL, etc.) and system-related types, by defining, where appropriate, typedefs according to the GEANT4 code
conventions.

3.2.1 Signature of GEANT4 classes

In order to keep an homogeneous naming style, and according to the GEANT4 coding style conventions, each class
part of the GEANT4 kernel has its name beginning with the prefix G4, e.g., G4VHit, G4GeometryManager,
GAProcessVector, etc. Instead of the raw C types, G4 types are used within the GEANT4 code. For the basic
numeric types (int, float, double, etc.), different compilers and different platforms provide different value
ranges. In order to assure portability, the use of G4int, G4float, G4double, G4bool, globally defined, is
preferable. G4 types implement the right generic type for a given architecture.

Basic types

The basic types in GEANT4 are considered to be the following:

e G4int,

* G4long,

e G4float,

* G4double,
* G4bool,

* G4complex,
* G4String.

which currently consist of simple typedefs to respective types defined in the CLHEP, STL or system libraries.
Most definitions of these basic types come with the inclusion of a single header file, globals.hh. This file also
provides inclusion of required system headers, as well as some global utility functions needed and used within the
GEANT4 kernel.

Typedefs to CLHEP classes and their usage

The following classes are typedefs to the corresponding classes of the CLHEP (Computing Library for High
Energy Physics) distribution. For more detailed documentation please refer to the CLHEP documentation.

e G4ThreeVector, G4RotationMatrix, G4LorentzVector and G4LorentzRotation:
Vector classes: defining 3-component (x,y,z) vector entities, rotation of such objects as 3x3 matrices, 4-
component (X,y,z,t) vector entities and their rotation as 4x4 matrices.

e G4Plane3D, G4Transform3D, G4Normal3D, G4Point3D, G4Scale3D,and G4Vector3D:
Geometrical classes: defining geometrical entities and transformations in 3D space.

3.2. Global Usage Classes 57

https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

Book For Application Developers, Release 11.0

3.2.2 The HEPRandom module in CLHEP

The HEPRandom module, originally part of the GEANT4 kernel, and now distributed as a module of CLHEP, has
been designed and developed starting from the Random class of MC++, the original CLHEP’s HepRandom module
and the Rogue Wave approach in the Math.h++ package. For detailed documentation on the HEPRandom classes see
the CLHEP documentation.

Information written in this manual is extracted from the original manifesto distributed with the HEPRandom package.

The HEPRandom module consists of classes implementing different random engines and different random
distributions. A distribution associated to an engine constitutes a random generator. A distribution class
can collect different algorithms and different calling sequences for each method to define distribution parameters or
range-intervals. An engine implements the basic algorithm for pseudo-random numbers generation.

There are 3 different ways of shooting random values:

1. Using the static generator defined in the HepRandom class: random values are shot using static methods
shoot () defined for each distribution class. The static generator will use, as default engine, a MixMaxRng
object, and the user can set its properties or change it with a new instantiated engine object by using the static
methods defined in the HepRandom class.

2. Skipping the static generator and specifying an engine object: random values are shot using static methods
shoot (*HepRandomEngine) defined for each distribution class. The user must instantiate an engine object
and give it as argument to the shoot method. The generator mechanism will then be by-passed by using the basic
flat () method of the specified engine. The user must take care of the engine objects he/she instantiates.

3. Skipping the static generator and instantiating a distribution object: random values are shot using fire ()
methods (NOT static) defined for each distribution class. The user must instantiate a distribution object giving
as argument to the constructor an engine by pointer or by reference. By doing so, the engine will be associated
to the distribution object and the generator mechanism will be by-passed by using the basic £1at () method of
that engine.

In this guide, we’ll only focus on the static generator (point 1.), since the static interface of HEPRandom is the only
one used within the GEANT4 toolkit.

HEPRandom engines

The class HepRandomEngine is the abstract class defining the interface for each random engine. It implements the
getSeed () and getSeeds () methods which return the initial seed value and the initial array of seeds (if
any) respectively. Many concrete random engines can be defined and added to the structure, simply making them
inheriting from HepRandomEngine. Several different engines are currently implemented in HepRandom, we describe
here five of them:

* HepJamesRandom
It implements the algorithm described in F.James, Comp. Phys. Comm. 60 (1990) 329 for pseudo-random
number generation.

* DRand48Engine
Random engine using the drand48 () and srand48 () system functions from C standard library to imple-
ment the £1lat () basic distribution and for setting seeds respectively. DRand48Engine uses the seed48 ()
function from C standard library to retrieve the current internal status of the generator, which is represented by
3 short values. DRand48Engine is the only engine defined in HEPRandom which intrinsically works in 32 bits
precision. Copies of an object of this kind are not allowed.

* MixMaxRng
Random number engine implementing the MixMax Matrix Generator of Pseudorandom Numbers generator
proposed by N.Z.Akopov, G.K.Saviddy and N.G.Ter-Arutyunian, J.Compt.Phy. 97, (1991) 573 and G.Savvidy
and N.Savvidy, J.Comput.Phys. 97 (1991) 566. This is the default random engine for the static generator; it will
be invoked by each distribution class unless the user sets a different one.

58 Chapter 3. Toolkit Fundamentals

https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

Book For Application Developers, Release 11.0

* RanluxEngine
The algorithm for RanluxEngine has been taken from the original implementation in FORTRAN77 by Fred
James, part of the MATHLIB HEP library. The initialisation is carried out using a Multiplicative Congruential
generator using formula constants of L’Ecuyer as described in F.James, Comp. Phys. Comm. 60 (1990) 329-
344. The engine provides five different luxury levels for quality of random generation. When instantiating a
RanluxEngine, the user can specify the luxury level to the constructor (if not, the default value 3 is taken). For
example:

RanluxEngine theRanluxEngine (seed, 4);

// instantiates an engine with ‘seed' and the best luxury-level
coo OF

RanluxEngine theRanluxEngine;

// instantiates an engine with default seed value and luxury-level

The class provides a get Luxury () method to get the engine luxury level.
The SetSeed () and SetSeeds () methods to set the initial seeds for the engine, can be invoked specifying
the luxury level. For example:

// static interface
HepRandom: : setTheSeed (seed, 4); // sets the seed to ‘seed' and luxury to 4
HepRandom: : setTheSeed (seed) ; // sets the seed to “seed' keeping

// the current luxury level

RanecuEngine

The algorithm for RanecuEngine is taken from the one originally written in FORTRAN77 as part of the MATH-
LIB HEP library. The initialisation is carried out using a Multiplicative Congruential generator using formula
constants of L’Ecuyer as described in F.James, Comp. Phys. Comm. 60 (1990) 329-344. Handling of seeds for
this engine is slightly different than the other engines in HEPRandom. Seeds are taken from a seed table given
an index, the get Seed () method returns the current index of seed table. The set Seeds () method will set
seeds in the local SeedTable at a given position index (if the index number specified exceeds the table’s size,
[index%size] is taken). For example:

// static interface

const G4longx table_entry;
table_entry = HepRandom: :getTheSeeds () ;

// it returns a pointer “table_entry' to the local SeedTable

// at the current ‘index' position. The couple of seeds

// accessed represents the current ‘status' of the engine itself !

G4int index=n;

G4long seeds[2];

HepRandom: : set TheSeeds (seeds, index) ;

// sets the new “index' for seeds and modify the values inside

// the local SeedTable at the ‘index' position. If the index

// 1s not specified, the current index in the table is considered.

The setSeed () method resets the current " status’ of the engine to the original seeds stored in the static table
of seeds in HepRandom, at the specified index.

Except for the RanecuEngine, for which the internal status is represented by just a couple of longs, all the other engines
have a much more complex representation of their internal status, which currently can be obtained only through the
methods saveStatus (), restoreStatus () and showStatus (), which can also be statically called from
HepRandom. The status of the generator is needed for example to be able to reproduce a run or an event in a run at a
given stage of the simulation.

RanecuEngine is probably the most suitable engine for this kind of operation, since its internal status can be
fetched/reset by simply using getSeeds ()/setSeeds () (getTheSeeds ()/setTheSeeds () for the static
interface in HepRandom).

3.2. Global Usage Classes 59

Book For Application Developers, Release 11.0

The static interface in the HepRandom class

HepRandom a singleton class and using a MixMaxRng engine as default algorithm for pseudo-random number gener-
ation. HepRandom defines a static private data member, theGenerator, and a set of static methods to manipulate
it. By means of theGenerator, the user can change the underlying engine algorithm, get and set the seeds, and use
any kind of defined random distribution. The static methods set TheSeed () and getTheSeed () will set and get
respectively the initial seed to the main engine used by the static generator. For example:

HepRandom: : setTheSeed (seed); // to change the current seed to 'seed'
int startSeed = HepRandom::getTheSeed(); // to get the current initial seed
HepRandom: : saveEngineStatus () ; // to save the current engine status on file

HepRandom: : restoreEngineStatus(); // to restore the current engine to a previous
// saved configuration
HepRandom: : showEngineStatus () ; // to display the current engine status to stdout

int index=n;

long seeds[2];

HepRandom: :getTheTableSeeds (seeds, index) ;
// fills “seeds' with the values stored in the global
// seedTable at position “index'

Only one random engine can be active at a time, the user can decide at any time to change it, define a new one (if not
done already) and set it. For example:

RanecuEngine theNewEngine;
HepRandom: : setTheEngine (¢theNewEngine) ;

or simply setting it to an old instantiated engine (the old engine status is kept and the new random sequence will start
exactly from the last one previously interrupted). For example:

HepRandom: : setTheEngine (¢myOldEngine) ;

Other static methods defined in this class are:

* void setTheSeeds (const G4longx seeds, G4int)

e const G4longx getTheSeeds ()
To set/get an array of seeds for the generator, in the case of a RanecuEngine this corresponds also to set/get the
current status of the engine.

* HepRandomEnginex getTheEngine ()
To get a pointer to the current engine used by the static generator.

HEPRandom distributions

A distribution-class can collect different algorithms and different calling sequences for each method to define distribu-
tion parameters or range-intervals; it also collects methods to fill arrays, of specified size, of random values, according
to the distribution. This class collects either static and not static methods. A set of distribution classes are defined in
HEPRandom. Here is the description of some of them:

* RandFlat Class to shoot flat random values (integers or double) within a specified interval. The class provides
also methods to shoot just random bits.

* RandExponential Class to shoot exponential distributed random values, given a mean (default mean = 1)

* RandGauss Class to shoot Gaussian distributed random values, given a mean (default = 0) or specifying also a
deviation (default = 1). Gaussian random numbers are generated two at the time, so every other time a number
is shot, the number returned is the one generated the time before.

* RandBreitWigner Class to shoot numbers according to the Breit-Wigner distribution algorithms (plain or
mean”\2).

60 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

RandPoisson Class to shoot numbers according to the Poisson distribution, given a mean (default = 1) (Algo-
rithm taken from W.H.Press et al., Numerical Recipes in C, Second Edition).

3.2.3 The HEPNumerics module

A set of classes implementing numerical algorithms has been developed in GEANT4. Most of the algorithms and
methods have been implemented mainly based on recommendations given in the books:

B.H. Flowers, An introduction to Numerical Methods In C++, Clarendon Press, Oxford 1995.
M. Abramowitz, 1. Stegun, Handbook of mathematical functions, DOVER Publications INC, New York 1965 ;
chapters 9, 10, and 22.

This set of classes includes:

G4ChebyshevApproximation Class creating the Chebyshev approximation for a function pointed by
fFunction data member. The Chebyshev polynomial approximation provides an efficient evaluation of the min-
imax polynomial, which (among all polynomials of the same degree) has the smallest maximum deviation from
the true function.

G4DataInterpolation Class providing methods for data interpolations and extrapolations: Polynomial,
Cubic Spline, ...

G4GaussChebyshevQ

G4GaussHermiteQ

G4GaussJacobiQ

G4GaussLaguerreQ Classes implementing the Gauss-Chebyshev, Gauss-Hermite, Gauss-Jacobi, Gauss-
Laguerre and Gauss-Legendre quadrature methods. Roots of orthogonal polynomials and corresponding weights
are calculated based on iteration method (by bisection Newton algorithm).

G4Integrator Template class collecting integrator methods for generic functions (Legendre, Simpson,
Adaptive Gauss, Laguerre, Hermite, Jacobi).

G4SimpleIntegration Class implementing simple numerical methods (Trapezoidal, MidPoint, Gauss,
Simpson, Adaptive Gauss, for integration of functions with signature: double f(double).

3.2.4 General management classes

The global category defines also a set of utility classes generally used within the kernel of GEANT4. These
classes include:

G4Allocator

A class for fast allocation of objects to the heap through paging mechanism. It’s meant to be used by associating
it to the object to be allocated and defining for it new and delete operators via MallocSingle () and
FreeSingle () methods of G4Allocator.

Note: G4Allocator assumes that objects being allocated have all the same size for the type they represent.
For this reason, classes which are handled by G4A11locator should avoid to be used as base-classes for oth-
ers. Similarly, base-classes of sub-classes handled through G4A1locator should not define their (eventually
empty) virtual destructors inlined; such measure is necessary in order also to prevent bad aliasing optimisations
by compilers which may potentially lead to crashes in the attempt to free allocated chunks of memory when
using the base-class pointer or not.

The list of allocators implicitly defined and used in GEANT4 is reported here:
events (G4Event): anEventAllocator

tracks (G4 Track): aTrackAllocator

stacked tracks (G4StackedTrack): aStackedTrackAllocator

primary particles (G4PrimaryParticle): aPrimaryParticleAllocator
primary vertices (G4PrimaryVertex): aPrimaryVertexAllocator

3.2. Global Usage Classes 61

Book For Application Developers, Release 11.0

— decay products (G4DecayProducts): aDecayProductsAllocator

— digits collections of an event (G4DCofThisEvent): anDCoTHAllocator

— digits collections (G4DigiCollection): aDCAllocator

— hits collections of an event (G4HCofThisEvent): anHCoTHAllocator

— hits collections (G4HitsCollection): anHCAllocator

— touchable histories (G4TouchableHistory): aTouchableHistoryAllocator

— trajectories (G4Trajectory): aTrajectoryAllocator

— trajectory points (G4TrajectoryPoint): aTrajectoryPointAllocator

— trajectory containers (G4TrajectoryContainer): aTrajectoryContainerAllocator

— navigation levels (G4NavigationLevel): aNavigationLevel Allocator

— navigation level nodes (G4NavigationLevelRep): aNavigLevelRepAllocator

- reference-counted handles (G4ReferenceCountedHandle<X>): aRCHAllocator

— counted objects (G4CountedOb ject <X>): aCountedObjectAllocator

— HEPEvt primary particles (G4HEPEvtParticle): aHEPEvtParticleAllocator

— electron occupancy objects(G4ElectronOccupancy): aElectronOccupancyAllocator

— “rich” trajectories (G4RichTrajectory): aRichTrajectoryAllocator

— “rich” trajectory points (G4RichTrajectoryPoint): aRichTrajectoryPointAllocator

— “smooth” trajectories (G4 SmoothTrajectory): aSmoothTrajectoryAllocator

— “smooth” trajectory points (G4SmoothTrajectoryPoint): aSmoothTrajectoryPointAllocator

— “ray” trajectories (G4RayTrajectory): G4RayTrajectoryAllocator

— “ray” trajectory points (G4RayTrajectoryPoint): G4RayTrajectoryPointAllocator
For each of these allocators, accessible from the global namespace, it is possible to monitor the allocation in
their memory pools or force them to release the allocated memory (for example at the end of a run):

// Return the size of the total memory allocated for tracks
//
aTrackAllocator.GetAllocatedSize () ;

// Return allocated storage for tracks to the free store
//

aTrackAllocator.ResetStorage () ;

G4ReferenceCountedHandle

Template class acting as a smart pointer and wrapping the type to be counted. It performs the reference counting
during the life-time of the counted object.

G4FastVector

Template class defining a vector of pointers, not performing boundary checking.

G4PhysicsVector

Defines a physics vector which has values of energy-loss, cross-section, and other physics values of a particle in
matter in a given range of the energy, momentum, etc. This class serves as the base class for a vector having var-
ious energy scale, for example like ‘log’ (G4PhysicsLogVector) ‘linear’ (G4PhysicsLinearVector),
‘free’ (G4PhysicsFreeVector), etc.

G4LPhysicsFreeVector

Implements a free vector for low energy physics cross-section data. A subdivision method is used to find the
energylmomentum bin.

G4PhysicsOrderedFreeVector

A physics ordered free vector inherits from G4PhysicsVector. It provides, in addition, a method for the
user to insert energy/value pairs in sequence. Methods to retrieve the max and min energies and values from the
vector are also provided.

G4Timer

Utility class providing methods to measure elapsed user/system process time. Uses <sys/times.h> and
<unistd.h> - POSIX.I.

G4UserLimits

Class collecting methods for get and set any kind of step limitation allowed in GEANT4.

G4UnitsTable

Placeholder for the system of units in GEANT4.

62

Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.3 System of units

3.3.1 Basic units

GEANT4 offers the user the possibility to choose and use the preferred units for any quantity. In fact, GEANT4 takes
care of the units. Internally a consistent set on units based on the HepSystemOfUnits is used:

millimeter (mm)
nanosecond (ns)

Mega electron Volt (MeV)
positron charge (eplus)
degree Kelvin (kelvin)
the amount of substance (mole)
luminous intensity (candela)
radian (radian)
steradian (steradian)

All other units are defined from the basic ones.
For instance:

millimeter = mm = 1;
meter = m = 1000+mm;

m3 = mxmxm;

In the file SCLHEP_BASE_DIR/include/CLHEP/Units/SystemOfUnits.h from the CLHEP installation,
one can find all units definitions.

One can also change the system of units to be used by the kernel.

3.3.2 Input your data

Avoid ‘hard coded’ data

The user must give the units for the data to introduce:

G4double Size = 15+km, KineticEnergy = 90.3+GeV, density = 1lsmg/cm3;

GEANT4 assumes that these specifications for the units are respected, in order to assure independence from the units
chosen in the client application.

If units are not specified in the client application, data are implicitly treated in internal GEANT4 system units; this
practice is however strongly discouraged.

If the data set comes from an array or from an external file, it is strongly recommended to set the units as soon as the
data are read, before any treatment. For instance:

for (int j=0, j<jmax, Jj++) CrossSection[]j] »= millibarn;

my calculations

3.3. System of units 63

Book For Application Developers, Release 11.0

Interactive commands

Some built-in commands from the User Interface (UI) also require units to be specified.
For instance:

/gun/energy 15.2 keV
/gun/position 3 2 -7 meter

If units are not specified, or are not valid, the command is refused.

3.3.3 Output your data

You can output your data with the wished units. To do so, it is sufficient to divide the data by the corresponding unit:

G4cout << KineticEnergy/keV << " keV";
G4cout << density/ (g/cm3) << " g/cm3";

Of course, G4cout << KineticEnergy will print the energy in the internal units system.

There is another way to output the data. Let GEANT4 choose the most appropriate units for the actual numerical value
of the data. It is sufficient to specify to which category the data belong to (Length, Time, Energy, etc.). For example:

G4cout << G4BestUnit (StepSize, "Length");

StepSize will be printed in km, m, mm, fermi, etc. depending of its actual value.

3.3.4 Introduce new units

If wished to introduce new units, there are two methods:
¢ You can extend the file SystemOfUnits.h
#include "SystemOfUnits.h"
static const G4double inch = 2.54xcm;

Using this method, it is not easy to define composed units. It is better to do the following:
* Instantiate an object of the class G4UnitDefinition. These objects are owned by the global
G4UnitsTable at construction, and must not be deleted by the user.

new G4UnitDefinition (name, symbol, category, value)
For example: define a few units for speed

new G4UnitDefinition ("km/hour" , "km/h", "Speed", km/(3600+s));
new G4UnitDefinition ("meter/ns", "m/ns", "Speed", m/ns);

The category “Speed” does not exist by default in G4UnitsTable, but it will be created automatically. The
class G4UnitDefinition is defined in source/global/management/G4UnitsTable.hh.

64 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.3.5 Print the list of units

You can print the list of units with the static function: G4UnitDefinition: :PrintUnitsTable (); or with
the interactive command: /units/list

3.4 Run

3.4.1 Basic concept of Run

In GEANT4, Run is the largest unit of simulation. A run consists of a sequence of events. Within a run, the detector
geometry, the set up of sensitive detectors, and the physics processes used in the simulation should be kept unchanged.
A run is represented by a G4Run class object. A run starts with BeamOn () method of G4RunManager.

Representation of a run

G4ARun represents a run. It has a run identification number, which should be set by the user, and the number of events
simulated during the run. Please note that the run identification number is not used by the GEANT4 kernel, and thus
can be arbitrarily assigned at the user’s convenience.

G4Run has pointers to the tables G4VHitsCollection and G4VDigiCollection. These tables are associ-
ated in case sensitive detectors and digitizer modules are simulated, respectively. The usage of these tables will be
mentioned in Hits and Digitization.

G4Run has two virtual methods, and thus you can extend G4Run class. In particular if you use GEANT4 in multi-
threaded mode and need to accumulate values, these two virtual method must be overwritten to specify how such
values should be collected firstly for a worker thread, and then for the entire run. These virtual methods are the
following.

virtual void RecordEvent (const G4Eventx) Method to be overwritten by the user for recording
events in this (thread-local) run. At the end of the implementation, G4Run base-class method for must be
invoked for recording data members in the base class.

void Merge (const G4Runx) Method to be overwritten by the user for merging local Run object to the global
Run object. At the end of the implementation, G4Run base-class method for must be invoked for merging data
members in the base class.

Manage the run procedures

G4RunManager manages the procedures of a run. In the constructor of G4RunManager, all of the manager classes
in GEANT4 kernel, except for some static managers, are constructed. These managers are deleted in the destructor of
G4RunManager. G4RunManager must be a singleton created in the user’s main () program; the pointer to this
singleton object can be obtained by other code using the GetRunManager () static method.

As already mentioned in How to Define the main() Program, all of the user initialization classes defined by the user
should be assigned to G4RunManager before starting initialization of the GEANT4 kernel. The assignments of these
user classes are done by SetUserInitialization () methods. All user classes defined by the GEANT4 kernel
will be summarized in User Actions.

G4RunManager has several public methods, which are listed below.

Initialize () Allinitializations required by the GEANT4 kernel are triggered by this method. Initializations are:
* construction of the detector geometry and set up of sensitive detectors and/or digitizer modules,
* construction of particles and physics processes,
* calculation of cross-section tables.

3.4. Run 65

Book For Application Developers, Release 11.0

This method is thus mandatory before proceeding to the first run. This method will be invoked automatically
for the second and later runs in case some of the initialized quantities need to be updated.

BeamOn (G4int numberOfEvent) This method triggers the actual simulation of a run, that is, an event loop. It
takes an integer argument which represents the number of events to be simulated.

GetRunManager () This static method returns the pointer to the G4RunManager singleton object.

GetCurrentEvent () This method returns the pointer to the G4Event object which is currently being simulated.
This method is available only when an event is being processed. At this moment, the application state of
GEANT4, which is explained in the following sub-section, is “EventProc”. When GEANT4 is in a state other
than “EventProc”, this method returns null. Please note that the return value of this method is const G4Event *
and thus you cannot modify the contents of the object.

SetNumberOfEventsToBeStored (G4int nPrevious) When simulating the “pile up” of more than one
event, it is essential to access more than one event at the same moment. By invoking this method,
G4RunManager keeps nPrevious G4Event objects. This method must be invoked before proceeding to Bea-
mOn().

GetPreviousEvent (G4int i_thPrevious) The pointer to the i_thPrevious G4Event object can be ob-
tained through this method. A pointer to a const object is returned. It is inevitable that i_thPrevious events
must have already been simulated in the same run for getting the i_thPrevious event. Otherwise, this method
returns null.

AbortRun () This method should be invoked whenever the processing of a run must be stopped. It is valid for
GeomClosed and EventProc states. Run processing will be safely aborted even in the midst of processing an
event. However, the last event of the aborted run will be incomplete and should not be used for further analysis.

Run manager classes for multi-threading mode

G4MTRunManager is the replacement of G4RunManager for multi-threading mode. At the very end of
Initialize () method, GAMTRunManager creates and starts worker threads. The event each thread is tasked
is in first-come-first-served basis, so that event numbers each thread has are not sequential.

G4WorkerRunManager is the local RunManager automatically instantiated by G4AMTRunManager to take care
of initialization and event handling of a thread. Both G4AMTRunManager and G4WorkerRunManager are derived
classes of G4ARunManager base class.

The static method GARunManager: : GetRunManager () returns the following pointer.

* It returns the pointer to the G4AWorkerRunManager of the local thread when it is invoked from thread-local
object.

e It returns the pointer to the GAMTRunManager when it is invoked from shared object.

* It returns the pointer to the base G4RunManager if it is used in the sequential mode.

G4RunManager has a method GetRunManagerType () that returns an enum named RMType to indicate what
kind of RunManager itis. RMType is defined as { sequentialRM, masterRM, workerRM }. From the
thread-local object, a static method GAMTRunManager: : GetMasterRunManager () is available to access to
G4MTRunManager. From a worker thread, the user may access to, for example, detector construction (it is a shared
class) through this GetMasterRunManager () method.

66 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

G4UserRunAction

G4UserRunAction is one of the user action classes from which you can derive your own concrete class. This base
class has three virtual methods as follows:

GenerateRun () This method is invoked at the beginning of the BeamOn() method but after confirmation of the
conditions of the GEANT4 kernel. This method should be used to instantiate a user-specific run class object.
BeginOfRunAction () This method is invoked at the beginning of the BeamOn() method but after confirmation
of the conditions of the GEANT4 kernel. Likely uses of this method include:
* setting a run identification number,
* booking histograms,
* setting run specific conditions of the sensitive detectors and/or digitizer modules (e.g., dead channels).
EndOfRunAction () This method is invoked at the very end of the BeamOn() method. Typical use cases of this
method are
* store/print histograms,
* manipulate run summaries.

3.4.2 GEANT4 as a state machine

GEANT4 is designed as a state machine. Some methods in GEANT4 are available for only a certain state(s).
G4RunManager controls the state changes of the GEANT4 application. States of GEANT4 are represented by the
enumeration G4ApplicationState. It has six states through the life cycle of a GEANT4 application.

G4State_PrelInit state A GEANT4 application starts with this state. The application needs to be initialized when
it is in this state. The application occasionally comes back to this state if geometry, physics processes, and/or
cut-off have been changed after processing a run.

G4State_Init state The application is in this state while the Initialize() method of G4RunManager is being in-
voked. Methods defined in any user initialization classes are invoked during this state.

G4State_Idle state The application is ready for starting a run.

G4State_GeomClosed state When BeamOn() is invoked, the application proceeds to this state to process a run.
Geometry, physics processes, and cut-off cannot be changed during run processing.

G4State_EventProc state A GEANT4 application is in this state when a particular event is being processed.
GetCurrentEvent() and GetPreviousEvent() methods of G4RunManager are available only at this state.

G4State_Quit state When the destructor of G4RunManager is invoked, the application comes to this “dead end”
state. Managers of the GEANT4 kernel are being deleted and thus the application cannot come back to any other
state.

G4State_Abort state When a G4Exception occurs, the application comes to this “dead end” state and causes a
core dump. The user still has a hook to do some “safe” operations, e.g. storing histograms, by implement-
ing a user concrete class of G4VStateDependent. The user also has a choice to suppress the occurrence of
G4Exception by a Ul command /control/suppressAbortion. When abortion is suppressed, you will still get error
messages issued by G4Exception, and there is NO guarantee of a correct result after the G4Exception error
message.

G4StateManager belongs to the intercoms category.

3.4. Run 67

Book For Application Developers, Release 11.0

3.4.3 User’s hook for state change

In case the user wants to do something at the moment of state change of GEANT4, the user can create a concrete class
of the G4vStateDependent base class. For example, the user can store histograms when G4Exception occurs and
GEANT4 comes to the Abort state, but before the actual core dump.

The following is an example user code which stores histograms when GEANT4 becomes to the Abort state. This class
object should be made in, for example main (), by the user code. This object will be automatically registered to
G4StateManager at its construction.

Listing 3.1: Header file of UserHookForAbortState

#ifndef UserHookForAbortState_ H
#define UserHookForAbortState H 1

#include "G4VStateDependent.hh"

class UserHookForAbortState : public G4VStateDependent
{

public:
UserHookForAbortState () ; // constructor
~UserHookForAbortState(); // destructor

virtual G4bool Notify (G4ApplicationState requiredState);
bi

Listing 3.2: Source file of UserHookForAbortState

#include "UserHookForAbortState.hh"

UserHookForAbortState: :UserHookForAbortState () {;}
UserHookForAbortState: : ~UserHookForAbortState () {;}

G4bool UserHookForAbortState::Notify (G4ApplicationState requiredState)
{

if (requiredState!=Abort) return true;
// Do book keeping here

return true;

}

3.4.4 Customizing the Run Manager

Virtual Methods in the Run Manager

G4RunManager is a concrete class with a complete set of functionalities for managing the GEANT4 kernel. It
is the only manager class in the GEANT4 kernel which must be constructed in the main () method of the user’s
application. Thus, instead of constructing the G4ARunManager provided by GEANT4, you are free to construct
your own RunManager. It is recommended, however, that your RunManager inherit G4ARunManager. For this
purpose, GARunManager has various virtual methods which provide all the functionalities required to handle the
GEANT4 kernel. Hence, your customized run manager need only override the methods particular to your needs; the
remaining methods in G4RunManager base class can still be used. A summary of the available methods is presented
here:

public: virtual void Initialize(); main entry point of GEANT4 kernel initialization
protected: virtual void InitializeGeometry(); geometry construction
protected: wvirtual void InitializePhysics(); physics processes construction
public: virtual void BeamOn (G4int n_event); main entry point of the event loop

68 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

protected: virtual G4bool ConfirmBeamOnCondition(); check the kernel conditions for the
event loop

protected: virtual void RunlInitialization(); prepare arun

protected: virtual void DoEventLoop (G4int n_events); manage an event loop

protected: virtual G4Event* GenerateEvent (G4int i_event); generation of G4Event object

protected: virtual void AnalyzeEvent (G4Event* anEvent); storage/analysis of an event

protected: virtual void RunTermination (); terminate a run

public: wvirtual void DefineWorldVolume (G4VPhysicalVolume * worldVol); set the
world volume to G4Navigator

public: wvirtual void AbortRun(); abort the run

Customizing the Event Loop

In G4RunManager the event loop is handled by the virtual method DoEventLoop () . This method is implemented
by a for loop consisting of the following steps:

1. constructa GAEvent object and assign to it primary vertex(es) and primary particles. This is done by the virtual
GeneratePrimaryEvent () method.

2. send the G4Event object to G4EventManager for the detector simulation. Hits and trajectories will be
associated with the G4Event object as a consequence.

3. perform bookkeeping for the current G4Event object. This is done by the virtual AnalyzeEvent () method.

DoEventLoop () performs the entire simulation of an event. However, it is often useful to split the above three
steps into isolated application programs. If, for example, you wish to examine the effects of changing discriminator
thresholds, ADC gate widths and/or trigger conditions on simulated events, much time can be saved by performing
steps 1 and 2 in one program and step 3 in another. The first program need only generate the hit/trajectory information
once and store it, perhaps in a database. The second program could then retrieve the stored G4Event objects and
perform the digitization (analysis) using the above threshold, gate and trigger settings. These settings could then be
changed and the digitization program re-run without re-generating the G4Events.

Changing the Detector Geometry

The detector geometry defined in your G4VUserDetectorConstruction concrete class can be changed during
a run break (between two runs). Two different cases are considered.

The first is the case in which you want to delete the entire structure of your old geometry and build up a completely
new set of volumes. For this case, you need to delete them by yourself, and let RunManager invokes Construct ()
and ConstructSDandField () methods of your detector construction once again when RunManager starts the
next run.

G4RunManager* runManager = G4RunManager::GetRunManager () ;
runManager—>ReinitializeGeometry () ;

IfthisReinitializeGeometry () isinvoked, Geomet ryHasBeenModified () (discussed next) is automat-
ically invoked. Presumably this case is rather rare. The second case is more frequent for the user.

The second case is the following. Suppose you want to move and/or rotate a particular piece of your detector compo-
nent. This case can easily happen for a beam test of your detector. It is obvious for this case that you need not change
the world volume. Rather, it should be said that your world volume (experimental hall for your beam test) should be
big enough for moving/rotating your test detector. For this case, you can still use all of your detector geometries, and
just use a Set method of a particular physical volume to update the transformation vector as you want. Thus, you
don’t need to re-set your world volume pointer to RunManager.

If you want to change your geometry for every run, you can implement it in the BeginOfRunAction ()
method of G4UserRunAction class, which will be invoked at the beginning of each run, or, derive the

3.4. Run 69

Book For Application Developers, Release 11.0

RunInitialization () method. Please note that, for both of the above mentioned cases, you need to let Run-
Manager know “the geometry needs to be closed again”. Thus, you need to invoke

runManager—>GeometryHasBeenModified () ;

before proceeding to the next run. An example of changing geometry is given in a GEANT4 tutorial in GEANT4
Training kit #2.

Switch physics processes

Inthe InitializePhysics () method, G4AVUserPhysicsList: :Construct is invoked in order to define
particles and physics processes in your application. Basically, you can not add nor remove any particles during
execution, because particles are static objects in GEANT4 (see How fo Specify Particles and Particles for details). In
addition, it is very difficult to add and/or remove physics processes during execution, because registration procedures
are very complex, except for experts (see How to Specify Physics Processes and Physics Processes). This is why the
initializePhysics () method is assumed to be invoked at once in GEANT4 kernel initialization.

However, you can switch on/off physics processes defined in your G4VUserPhysicsList concrete class and also
change parameters in physics processes during the run break.

Youcanuse ActivateProcess () and InActivateProcess () methods of GAProcessManager anywhere
outside the event loop to switch on/off some process. You should be very careful to switch on/off processes inside the
event loop, though it is not prohibited to use these methods even in the EventProc state.

It is a likely case to change cut-off values in a run. You can change defaultCutValue in
G4AVUserPhysicsList during the Idle state. In this case, all cross section tables need to be recalculated be-
fore the event loop. You should use the CutOf fHasBeenModified () method when you change cut-off values so
that the Set Cut s method of your PhysicsList concrete class will be invoked.

3.4.5 Managing worker thread

G4UserWorkerInitialization is an additional user initialization class to be used only for the multi-
threaded mode. The object of this class can be set to GAMTRunManager, but not to G4RunManager.
GAUserWorkerInitialization class has five virtual methods as the user hooks which are invoked at several
occasions of the life cycle of each thread.

virtual void WorkerInitialize () const This method is called after the tread is created but before the
G4WorkerRunManager is instantiated.

virtual void WorkerStart () const This method is called once at the beginning of simulation job when
kernel classes and user action classes have already instantiated but geometry and physics have not been yet
initialized. This situation is identical to “Prelnit” state in the sequential mode.

virtual void WorkerStartRun() const This method is called before an event loop. Geometry and
physics have already been set up for the thread. All threads are synchronized and ready to start the local event
loop. This situation is identical to “Idle” state in the sequential mode.

virtual void WorkerRunEnd () const This method is called for each thread when the local event loop is
done, but before the synchronization over all worker threads.

virtual void WorkerStop () const This method is called once at the end of simulation job.

70 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.5 Event

3.5.1 Representation of an event

G4Event represents an event. An object of this class contains all inputs and outputs of the simulated event. This
class object is constructed in G4RunManager and sent to G4EventManager. The event currently being processed
can be obtained via the getCurrentEvent () method of G4RunManager.

3.5.2 Structure of an event

A G4Event object has four major types of information. Get methods for this information are available in G4Event.

Primary vertexes and primary particles Details are given in Event Generator Interface.

Trajectories Trajectories are stored in G4TrajectoryContainer class objects and the pointer to this container is stored
in G4Event. The contents of a trajectory are given in Trajectory and Trajectory Point.

Hits collections Collections of hits generated by sensitive detectors are kept in GAHCofThisEvent class object
and the pointer to this container class object is stored in G4Event. See Hits for the details.

Digits collections Collections of digits generated by digitizer modules are kept in GADCofThisEvent class object
and the pointer to this container class object is stored in G4Event. See Digitization for the details.

3.5.3 Mandates of G4EventManager

G4AEventManager is the manager class to take care of one event. It is responsible for:

* converting G4PrimaryVertex and G4PrimaryParticle objects associated with the current GAEvent
object to G4Track objects. All of G4Track objects representing the primary particles are sent to
G4StackManager.

e Pop one G4Track object from G4StackManager and send it to G4TrackingManager. The current
G4Track object is deleted by GAEventManager after the track is simulated by G4TrackingManager, if
the track is marked as “killed”.

* In case the primary track is “suspended” or “postponed to next event” by G4TrackingManager, it is sent
back to the G4StackManager. Secondary G4Track objects returned by G4TrackingManager are also
sent to G4StackManager.

e When G4StackManager returns NULL for the “pop” request, G4AEventManager terminates the current
processing event.

¢ invokes the user-defined methods beginOfEventAction () and endOfEventAction () from the
G4UserEventAction class. See User Information Classes for details.

3.5.4 Stacking mechanism

G4StackManager has three stacks, named urgent, waiting and postpone-to-next-event, which are objects of the
G4TrackStack class. By default, all G4Track objects are stored in the urgent stack and handled in a “last in first
out” manner. In this case, the other two stacks are not used. However, tracks may be routed to the other two stacks by
the user-defined G4UserStackingAction concrete class.

If the methods of G4UserStackingAction have been overridden by the user, the postpone-to-next-event and
waiting stacks may contain tracks. At the beginning of an event, G4StackManager checks to see if any tracks left
over from the previous event are stored in the postpone-to-next-event stack. If so, it attempts to move them to the
urgent stack. But first the PrepareNewEvent () method of G4UserStackingAction is called. Here tracks
may be re-classified by the user and sent to the urgent or waiting stacks, or deferred again to the postpone-to-next-event
stack. As the event is processed G4StackManager pops tracks from the urgent stack until it is empty. At this point

3.5. Event 71

Book For Application Developers, Release 11.0

the NewStage () method of G4UserStackingAction is called. In this method tracks from the waiting stack
may be sent to the urgent stack, retained in the waiting stack or postponed to the next event.

Details of the user-defined methods of G4UserStackingAction and how they affect track stack management are
given in User Information Classes.

3.6 Event Generator Interface

3.6.1 Structure of a primary event
Primary vertex and primary particle

The G4Event class object should have a set of primary particles when it is sent to G4EventManager via
processOneEvent () method. It is the mandate of your G4VUserPrimaryGeneratorAction concrete class
to send primary particles to the G4Event object.

The G4PrimaryParticle class represents a primary particle with which GEANT4 starts simulating an event.
This class object has information on particle type and its three momenta. The positional and time information of
primary particle(s) are stored in the G4PrimaryVertex class object and, thus, this class object can have one or
more G4PrimaryParticle class objects which share the same vertex. Primary vertexes and primary particles are
associated with the G4Event object by a form of linked list.

A concrete class of G4VPrimaryGenerator, the G4PrimaryParticle object is constructed with either a
pointer to G4ParticleDefinition or an integer number which represents P.D.G. particle code. For the case of
some artificial particles, e.g., geantino, optical photon, etc., or exotic nuclear fragments, which the P.D.G. particle code
does not cover, the G4APrimaryParticle should be constructed by G4ParticleDefinition pointer. On the
other hand, elementary particles with very short life time, e.g., weak bosons, or quarks/gluons, can be instantiated
as G4PrimaryParticle objects using the P.D.G. particle code. It should be noted that, even though primary
particles with such a very short life time are defined, GEANT4 will simulate only the particles which are defined as
G4ParticleDefinition class objects. Other primary particles will be simply ignored by G4EventManager.
But it may still be useful to construct such “intermediate” particles for recording the origin of the primary event.

Forced decay channel

The G4APrimaryParticle class object can have a list of its daughter particles. If the parent particle is an “inter-
mediate” particle, which GEANT4 does not have a corresponding G4ParticleDefinition, this parent particle is
ignored and daughters are assumed to start from the vertex with which their parent is associated. For example, a Z
boson is associated with a vertex and it has positive and negative muons as its daughters, these muons will start from
that vertex.

There are some kinds of particles which should fly some reasonable distances and, thus, should be simulated by
GEANT4, but you still want to follow the decay channel generated by an event generator. A typical case of these
particles is B meson. Even for the case of a primary particle which has a corresponding G4ParticleDefinition,
it can have daughter primary particles. GEANT4 will trace the parent particle until it comes to decay, obeying multiple
scattering, ionization loss, rotation with the magnetic field, etc. according to its particle type. When the parent comes
to decay, instead of randomly choosing its decay channel, it follows the “pre-assigned” decay channel. To conserve
the energy and the momentum of the parent, daughters will be Lorentz transformed according to their parent’s frame.

72 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.6.2 Interface to a primary generator

G4HEPEVvtinterface

Unfortunately, almost all event generators presently in use, commonly are written in FORTRAN. For GEANT4, it was
decided to not link with any FORTRAN program or library, even though the C++ language syntax itself allows such
a link. Linking to a FORTRAN package might be convenient in some cases, but we will lose many advantages of
object-oriented features of C++, such as robustness. Instead, GEANT4 provides an ASCII file interface for such event
generators.

GAHEPEvtInterface is one of GAVPrimaryGenerator concrete class and thus it can be used in your
G4VUserPrimaryGeneratorAction concrete class. G4HEPEvtInterface reads an ASCII file produced
by an event generator and reproduces G4PrimaryParticle objects associated with a G4PrimaryVertex ob-
ject. It reproduces a full production chain of the event generator, starting with primary quarks, etc. In other words,
G4HEPEvtInterface converts information stored in the /HEPEVT/ common block to an object-oriented data
structure. Because the /HEPEVT/ common block is commonly used by almost all event generators written in FOR-
TRAN, G4HEPEvtInterface can interface to almost all event generators currently used in the HEP commu-
nity. The constructor of G4HEPEvtInterface takes the file name. Listing 3.3 shows an example how to use
GAHEPEvtInterface. Note that an event generator is not assumed to give a place of the primary particles, the
interaction point must be set before invoking GeneratePrimaryVertex () method.

Listing 3.3: An example code for GAHEPEvt Interface

#ifndef ExNO4PrimaryGeneratorAction_h
#define ExNO4PrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

class G4VPrimaryGenerator;
class G4Event;

class ExNO4PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
public:
ExNO4PrimaryGeneratorAction () ;
~ExNO4PrimaryGeneratorAction () ;

public:
void GeneratePrimaries (G4Event* anEvent) ;

private:
G4VPrimaryGenerator* HEPEvt;
bi

#endif

#include "ExNO4PrimaryGeneratorAction.hh"

#include "G4Event.hh"
#include "G4HEPEvtInterface.hh"

ExNO4PrimaryGeneratorAction: :ExNO4PrimaryGeneratorAction ()

{
HEPEvt = new G4HEPEvtInterface ("pythia_ event.data");

}

ExNO4PrimaryGeneratorAction: : ~ExNO4PrimaryGeneratorAction ()

{
delete HEPEvVt;

}
(continues on next page)

3.6. Event Generator Interface 73

Book For Application Developers, Release 11.0

(continued from previous page)

void ExNO4PrimaryGeneratorAction: :GeneratePrimaries (G4Event* anEvent)
{
HEPEvt->SetParticlePosition (G4ThreeVector (0.+cm,0.*cm, 0.+cm)) ;
HEPEvt->GeneratePrimaryVertex (anEvent) ;

}

Format of the ASCII file

An ASCII file, which will be fed by G4HEPEvt Interface should have the following format.

 The first line of each primary event should be an integer which represents the number of the following lines of
primary particles.

» Each line in an event corresponds to a particle in the /HEPEVT/ common. Each line has ISTHEP, IDHEP,
JDAHEP (1), JDAHEP (2), PHEP (1), PHEP(2), PHEP(3), PHEP (5). Refertothe /HEPEVT/
manual for the meanings of these variables.

Listing 3.4 shows an example FORTRAN code to generate an ASCII file.

Listing 3.4: A FORTRAN example using the /HEPEVT/ common.

KAk Ak hhkhk kA A A Ak Ak kA A Ak hk kA A Ak hkhk kA Ak kb hk Ak Ak hkhkhkhkhkhkhhh ok ok khhkk*k
SUBROUTINE HEP2G4

*

« Convert /HEPEVT/ event structure to an ASCII file

* to be fed by G4HEPEvtInterface

*

Ak hkhhkhkkh kA hkhkhhhhhkhkhhhhkhhkhrrhhhkhkhkhrhrhkhhkhhkhkhrhhkhkkhkkhkhkhrrhkhhhhhhhkk*k
PARAMETER (NMXHEP=2000)
COMMON/HEPEVT/NEVHEP , NHEP, ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,

>JMOHEP (2, NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5, NMXHEP) , VHEP (4, NMXHEP)

DOUBLE PRECISION PHEP, VHEP

WRITE (6,) NHEP
DO IHEP=1,NHEP
WRITE (6,10)
> ISTHEP (IHEP), IDHEP (IHEP), JDAHEP (1, IHEP) , JDAHEP (2, IHEP),
> PHEP (1, IHEP),PHEP (2, IHEP) , PHEP (3, IHEP) , PHEP (5, IHEP)
10 FORMAT (4110,4 (1X,D15.8))
ENDDO

RETURN
END

Future interface to the new generation generators

Several activities have already been started for developing object-oriented event generators. Such new generators
can be easily linked and used with a GEANT4 based simulation. Furthermore, we need not distinguish a primary
generator from the physics processes used in GEANT4. Future generators can be a kind of physics process plugged-in
by inheriting G4VProcess.

74 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.6.3 Event overlap using multiple generators

Your G4VUserPrimaryGeneratorAction concrete class can have more than one G4VPrimaryGenerator
concrete class. Each G4VPrimaryGenerator concrete class can be accessed more than once per event. Using
these class objects, one event can have more than one primary event.

One possible use is the following. Within an event, a GAHEPEvt Interface class object instantiated with a mini-
mum bias event file is accessed 20 times and another G4AHEPEvt Interface class object instantiated with a signal
event file is accessed once. Thus, this event represents a typical signal event of LHC overlapping 20 minimum bias
events. It should be noted that a simulation of event overlapping can be done by merging hits and/or digits associ-
ated with several events, and these events can be simulated independently. Digitization over multiple events will be
mentioned in Digitization.

3.7 Event Biasing Techniques

3.7.1 Scoring, Geometrical Importance Sampling and Weight Roulette

GEANT4 provides event biasing techniques which may be used to save computing time in such applications as
the simulation of radiation shielding. These are geometrical splitting and Russian roulette (also called geomet-
rical importance sampling), and weight roulette. Scoring is carried out by G4MultiFunctionalDetector
(see G4MultiFunctionalDetector and G4VPrimitiveScorer and Concrete classes of G4VPrimitiveScorer) using the
standard GEANT4 scoring technique. Biasing specific scorers have been implemented and are described within
G4MultiFunctionalDetector documentation. In this chapter, it is assumed that the reader is familiar with
both the usage of GEANT4 and the concepts of importance sampling. More detailed documentation may be found in
the documents ‘Scoring, geometrical importance sampling and weight roulette’.

A detailed description of different use-cases which employ the sampling and scoring techniques can be found in the
document ‘Use cases of importance sampling and scoring in Geant4’,

The purpose of importance sampling is to save computing time by sampling less often the particle histories entering
“less important” geometry regions, and more often in more “important” regions. Given the same amount of com-
puting time, an importance-sampled and an analogue-sampled simulation must show equal mean values, while the
importance-sampled simulation will have a decreased variance.

The implementation of scoring is independent of the implementation of importance sampling. However both share
common concepts. Scoring and importance sampling apply to particle types chosen by the user, which should be
borne in mind when interpreting the output of any biased simulation.

Examples on how to use scoring and importance sampling may be found in examples/extended/biasing.

Geometries

The kind of scoring referred to in this note and the importance sampling apply to spatial cells provided by the user.

A cell is a physical volume (further specified by it’s replica number, if the volume is a replica). Cells may be defined
in two kinds of geometries:

1. mass geometry: the geometry setup of the experiment to be simulated. Physics processes apply to this geometry.
2. parallel-geometry: a geometry constructed to define the physical volumes according to which scoring and/or
importance sampling is applied.

The user has the choice to score and/or sample by importance the particles of the chosen type, according to mass
geometry or to parallel geometry. It is possible to utilize several parallel geometries in addition to the mass geometry.
This provides the user with a lot of flexibility to define separate geometries for different particle types in order to apply
scoring or/and importance sampling.

3.7. Event Biasing Techniques 75

http://geant4.web.cern.ch/node/211
http://geant4.web.cern.ch/node/212

Book For Application Developers, Release 11.0

Note: Parallel geometries should be constructed using the implementation as described in Parallel Geometries. There
are a few conditions for parallel geometries:

¢ The world volume for parallel and mass geometries must be identical copies.
* Scoring and importance cells must not share boundaries with the world volume.

Changing the Sampling

Samplers are higher level tools which perform the necessary changes of the GEANT4 sampling in order to apply
importance sampling and weight roulette.

Variance reduction (and scoring through the G4MultiFunctionalDetector) may be combined arbitrarily for
chosen particle types and may be applied to the mass or to parallel geometries.

The G4GeometrySampler can be applied equally to mass or parallel geometries with an abstract interface supplied
by G4VSampler. G4VSampler provides Prepare. .. methods and a Configure method:

class G4VSampler
{
public:
G4vVSampler () ;
virtual ~G4VSampler();
virtual void PreparelImportanceSampling(G4VIStore =xistore,
const G4VImportanceAlgorithm

xialg = 0) = 0;
virtual void PrepareWeightRoulett (G4double wsurvive = 0.5,
G4double wlimit = 0.25,
G4double isource = 1) = 0;

virtual void PrepareWeightWindow (G4VWeightWindowStore xwwstore,
G4VWeightWindowAlgorithm *wwAlg = O,
G4PlaceOfAction placeOfAction =

onBoundary) = 0;
virtual void Configure() = 0;
virtual void ClearSampling() = 0;
virtual G4bool IsConfigured() const = 0;

bi

The methods for setting up the desired combination need specific information:

* Importance sampling: message PrepareImportanceSampling with a G4VIStore and optionally a
G4VImportanceAlgorithm
* Weight window: message PrepareWeightWindow with the arguments:
— *wwstore: a G4VWeightWindowStore for retrieving the lower weight bounds for the energy-space
cells
- *wwAlg: a G4VWeightWindowAlgorithm if a customized algorithm should be used
— placeOfAction: a G4PlaceOfAction specifying where to perform the biasing
* Weight roulette: message PrepareWeightRoulett with the optional parameters:
— wsurvive: survival weight
— wlimit: minimal allowed value of weight * source importance / cell importance
— isource: importance of the source cell

Each object of a sampler class is responsible for one particle type. The particle type is given to the constructor of the
sampler classes via the particle type name, e.g. “neutron”. Depending on the specific purpose, the Configure () of
a sampler will set up specialized processes (derived from G4VProcess) for transportation in the parallel geometry,
importance sampling and weight roulette for the given particle type. When Configure () is invoked the sampler
places the processes in the correct order independent of the order in which user invoked the Prepare. . . methods.

76 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

Note:

e The Prepare. .. () functions may each only be invoked once.
* To configure the sampling the function Configure () must be called after the G4RunManager has been
initialized and the PhysicsList has been instantiated.

The interface and framework are demonstrated in the examples/extended/biasing directory, with the main
changes being to the G4GeometrySampler class and the fact that in the parallel case the WorldVolume is a copy of
the Mass World. The parallel geometry now has to inherit from G4VUserParallelWorld which also has the
GetWorld () method in order to retrieve a copy of the mass geometry World Volume.

class BO2ImportanceDetectorConstruction : public G4VUserParallelWorld
ghostWorld = GetWorld();

The constructor for G4Geomet rySampler takes a pointer to the physical world volume and the particle type name
(e.g. “neutron”) as arguments. In a single mass geometry the sampler is created as follows:

G4GeometrySampler mgs (detector—->GetWorldVolume (), "neutron") ;
mgs.SetParallel (false);

Whilst the following lines of code are required in order to set up the sampler for the parallel geometry case:
G4VPhysicalVolume* ghostWorld = pdet->GetWorldVolume () ;
G4GeometrySampler pgs (ghostWorld, "neutron");

pgs.SetParallel (true);

Also note that the preparation and configuration of the samplers has to be carried out affer the instantiation of the
UserPhysicsList. With the modular reference PhysicsList the following set-up is required (first is for biasing, the
second for scoring):

physicsList->RegisterPhysics (new G4ImportanceBiasing (&pgs,parallelName)) ;
physicsList->RegisterPhysics (new G4ParallelWorldPhysics (parallelName)) ;

If the a UserPhysicsList is being implemented, then the following should be used to give the pointer to the Geome-
trySampler to the PhysicsList:

physlist->AddBiasing (&pgs,parallelName) ;

Then to instantiate the biasing physics process the following should be included in the UserPhysicsList and called
from ConstructProcess ():

AddBiasingProcess () {
fGeomSampler->SetParallel (true); // parallelworld
G4IStorex iStore = G4IStore::GetInstance (fBiasWorldName) ;
fGeomSampler->SetWorld (iStore->GetParallelWorldVolumePointer ()) ;
// fGeomSampler->PreparelmportanceSampling (G4IStore::
// GetInstance (fBiasWorldName), 0);
static G4bool first = true;
if(first) {
fGeomSampler->PrepareImportanceSampling (iStore, 0);

fGeomSampler->Configure () ;
G4cout << " GeomSampler Configured!!! " << G4endl;
first = false;

}

#ifdef G4MULTITHREADED

(continues on next page)

3.7. Event Biasing Techniques 77

Book For Application Developers, Release 11.0

(continued from previous page)

fGeomSampler->AddProcess () ;
#else
G4cout << " Running in singlethreaded mode!!! " << G4endl;
#endif

pgs.PrepareImportanceSampling (G4IStore: :GetInstance (pdet—>GetName ()), O0);
pgs.Configure () ;

Due to the fact that biasing is a process and has to be inserted after all the other processes have been created.

Importance Sampling

Importance sampling acts on particles crossing boundaries between “importance cells”. The action taken depends on
the importance values assigned to the cells. In general a particle history is either split or Russian roulette is played
if the importance increases or decreases, respectively. A weight assigned to the history is changed according to the
action taken.

The tools provided for importance sampling require the user to have a good understanding of the physics in the
problem. This is because the user has to decide which particle types require importance sampled, define the cells,
and assign importance values to the cells. If this is not done properly the results cannot be expected to describe a real
experiment.

The assignment of importance values to a cell is done using an importance store described below.

An “importance store” with the interface G4VIStore is used to store importance values related to cells. In order
to do importance sampling the user has to create an object (e.g. of class G4IStore) of type G4VIStore. The
samplers may be given a G4VIStore. The user fills the store with cells and their importance values. The store is
now a singleton class so should be created using a GetInstance method:

G4IStore *alstore = G4IStore::GetInstance () ;

Or if a parallel world is used:

G4IStore ralstore = G4IStore::GetInstance (pdet->GetName());

An importance store has to be constructed with a reference to the world volume of the geometry used for importance
sampling. This may be the world volume of the mass or of a parallel geometry. Importance stores derive from the
interface G4VIStore:

class GA4VIStore
{
public:

G4VIStore () ;
virtual ~G4VIStore();
virtual G4double GetImportance (const G4GeometryCell &gCell) const = 0;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const = 0;
virtual const G4VPhysicalVolume &GetWorldVolume () const = O;

}i

A concrete implementation of an importance store is provided by the class G4VStore. The public part of the class is:

class G4IStore : public G4VIStore
{
public:
explicit G4IStore(const G4VPhysicalVolume &worldvolume) ;
virtual ~G4IStore();
virtual G4double GetImportance (const G4GeometryCell &gCell) const;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const;

(continues on next page)

78 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

(continued from previous page)

virtual const G4VPhysicalVolume &GetWorldVolume () const;
void AddImportanceGeometryCell (G4double importance,
const G4GeometryCell &gCell);
void AddImportanceGeometryCell (G4double importance,
const G4VPhysicalVolume ¢,
G4int aRepNum = 0);
void ChangeImportance (G4double importance,
const G4GeometryCell &gCell);
void ChangeImportance (G4double importance,
const G4VPhysicalVolume &,
G4int aRepNum = 0);
G4double GetImportance (const G4VPhysicalVolume ¢,
G4int aRepNum = 0) const ;
private:

bi

The member function AddImportanceGeometryCell () enters a cell and an importance value into the impor-
tance store. The importance values may be returned either according to a physical volume and a replica number or
according to a G4GeometryCell. The user must be aware of the interpretation of assigning importance values to
a cell. If scoring is also implemented then this is attached to logical volumes, in which case the physical volume and
replica number method should be used for assigning importance values. See examples/extended/biasing
B01 and BO2 for examples of this.

Note: An importance value must be assigned to every cell.

The different cases:

 Cell is not in store
Not filling a certain cell in the store will cause an exception.
* Importance value = zero
Tracks of the chosen particle type will be killed.
* importance values > 0
Normal allowed values
e Importance value smaller zero
Not allowed!

The Importance Sampling Algorithm

Importance sampling supports using a customized importance sampling algorithm. To this end, the sampler interface
Changing the Sampling may be given a pointer to the interface G4AVImportanceAlgorithm:

class G4VImportanceAlgorithm
{
public:
G4VImportanceAlgorithm() ;
virtual ~G4VImportanceAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double ipre,
G4double ipost,
G4double init_w) const = 0;
bi

The method Calculate () takes the arguments:

* ipre, ipost : importance of the previous cell and the importance of the current cell, respectively.
* init_w: the particle’s weight

It returns the struct:

3.7. Event Biasing Techniques 79

Book For Application Developers, Release 11.0

class G4Nsplit_Weight
{
public:

G4int f£N;
G4double fW;
}i

* fN: the calculated number of particles to exit the importance sampling
* fW: the weight of the particles
The user may have a customized algorithm used by providing a class inheriting from G4VImportanceAlgorithm.

If no customized algorithm is given to the sampler the default importance sampling algorithm is used. This algorithm
is implemented in G4 ImportanceAlgorithm.

The Weight Window Technique

The weight window technique is a weight-based alternative to importance sampling:

* applies splitting and Russian roulette depending on space (cells) and energy
* user defines weight windows in contrast to defining importance values as in importance sampling

In contrast to importance sampling this technique is not weight blind. Instead the technique is applied according to the
particle weight with respect to the current energy-space cell.

Therefore the technique is convenient to apply in combination with other variance reduction techniques such as cross-
section biasing and implicit capture.

A weight window may be specified for every cell and for several energy regions: space-energy cell.

splitting
to survival weight

P

upper weight bound

survival weight

weight window

lower weight bound -
Russian roulette

~ kill or move to survival weight

Fig. 3.2: Weight window concept

Weight window concept
The user specifies a lower weight bound W_L for every space-energy cell.

* The upper weight bound W_U and the survival weight W_S are calculated as:

80 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

W _U=C_UW_Land
W_S=C_SW_L.
* The user specifies C_S and C_U once for the whole problem.
* The user may give different sets of energy bounds for every cell or one set for all geometrical cells
¢ Special case: if C_S = C_U =1 for all energies then weight window is equivalent to importance sampling
* The user can choose to apply the technique: at boundaries, on collisions or on boundaries and collisions

The energy-space cells are realized by G4Geomet ryCell as in importance sampling. The cells are stored in a weight
window store defined by G4VileightWindowStore:

class G4VWeightWindowStore ({
public:
G4ViWeightWindowStore () ;
virtual ~G4VWeightWindowStore () ;
virtual G4double GetLowerWeitgh (const G4GeometryCell &gCell,
G4double partEnergy) const = 0;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const = 0;
virtual const G4VPhysicalVolume &GetWorldVolume () const = 0;
bi

A concrete implementation is provided:

class G4WeightWindowStore: public G4VWeightWindowStore {
public:
explicit G4WeightWindowStore (const G4VPhysicalVolume &worldvolume) ;
virtual ~G4WeightWindowStore () ;
virtual G4double GetLowerWeitgh (const G4GeometryCell &gCell,
G4double partEnergy) const;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const;
virtual const G4VPhysicalVolume &GetWorldVolume () const;
void AddLowerWeights (const G4GeometryCell &gCell,
const std::vector<G4double> &lowerWeights);
void AddUpperEboundLowerWeightPairs (const G4GeometryCell &gCell,
const G4UpperEnergyToLowerWeightMapé&
enWeMap) ;
void SetGeneralUpperEnergyBounds (const
std::set<G4double, std::less<G4double> > & enBounds) ;

private::

bi

The user may choose equal energy bounds for all cells. In this case a set of upper energy bounds must be given to
the store using the method SetGeneralUpperEnergyBounds. If a general set of energy bounds have been set
AddLowerWeights can be used to add the cells.

Alternatively, the user may chose different energy regions for different cells. In this case the user must
provide a mapping of upper energy bounds to lower weight bounds for every cell using the method
AddUpperEboundLowerWeightPairs.

Weight window algorithms implementing the interface class G4VileightWindowAlgorithm can be used to define
a customized algorithm:

class G4VWeightWindowAlgorithm {
public:
G4ViWeightWindowAlgorithm () ;
virtual ~G4VWeightWindowAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double init_w,
G4double lowerWeightBound) const = 0;
}i

A concrete implementation is provided and used as a default:

3.7. Event Biasing Techniques 81

Book For Application Developers, Release 11.0

class G4WeightWindowAlgorithm : public G4VWeightWindowAlgorithm {
public:
G4WeightWindowAlgorithm (G4double upperLimitFaktor =
G4double survivalFaktor = 3
G4int maxNumberOfSplits = 5
virtual ~G4WeightWindowAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double init_w,
G4double lowerWeightBound) const;

5,

) i

private:

Vi

The constructor takes three parameters which are used to: calculate the upper weight bound (upperLimitFaktor),
calculate the survival weight (survivalFaktor), and introduce a maximal number (maxNumberOfSplits) of copies to be
created in one go.

In addition, the inverse of the maxNumberOfSplits is used to specify the minimum survival probability in case of
Russian roulette.

The Weight Roulette Technique

Weight roulette (also called weight cutoff) is usually applied if importance sampling and implicit capture are used
together. Implicit capture is not described here but it is useful to note that this procedure reduces a particle weight in
every collision instead of killing the particle with some probability.

Together with importance sampling the weight of a particle may become so low that it does not change any result
significantly. Hence tracking a very low weight particle is a waste of computing time. Weight roulette is applied in
order to solve this problem.

The weight roulette concept

Weight roulette takes into account the importance “Ic” of the current cell and the importance “Is” of the cell in which
the source is located, by using the ratio “R=Is/Ic”.

Weight roulette uses a relative minimal weight limit and a relative survival weight. When a particle falls below the
weight limit Russian roulette is applied. If the particle survives, tracking will be continued and the particle weight will
be set to the survival weight.

The weight roulette uses the following parameters with their default values:

e wsurvival: 0.5
e wlimit: 0.25
e isource: 1

The following algorithm is applied:
If a particle weight “w” is lower than R*wlimit:

* the weight of the particle will be changed to “ws = wsurvival*R”
* the probability for the particle to survive is “p = w/ws”

82 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

3.7.2 Physics Based Biasing

GEANT4 supports physics based biasing through a number of general use, built in biasing techniques. A utility class,
G4WrapperProcess, is also available to support user defined biasing.

Built in Biasing Options

Primary Particle Biasing

Primary particle biasing can be used to increase the number of primary particles generated in a particular phase space
region of interest. The weight of the primary particle is modified as appropriate. A general implementation is provided
through the G4GeneralParticleSource class. It is possible to bias position, angular and energy distributions.

GAGeneralParticleSource is a concrete implementation of G4VPrimaryGenerator. To use, instantiate
G4GeneralParticleSource inthe G4VUserPrimaryGeneratorAction class, as demonstrated below.

MyPrimaryGeneratorAction: :MyPrimaryGeneratorAction () {
generator = new G4GeneralParticleSource;

}

void
MyPrimaryGeneratorAction: :GeneratePrimaries (G4Event+anEvent) {
generator->GeneratePrimaryVertex (anEvent) ;

}

The biasing can be configured through interactive commands, as described in General Particle Source. Examples are
also distributed with the GEANT4 distribution in examples/extended/eventgenerator/exgps.

Hadronic Leading Particle Biasing

One hadronic leading particle biasing technique is implemented in the G4HadLeadBias utility. This method keeps
only the most important part of the event, as well as representative tracks of each given particle type. So the track
with the highest energy as well as one of each of Baryon, pi0, mesons and leptons. As usual, appropriate weights are
assigned to the particles. Setting the SwitchLeadBiasOn environmental variable will activate this utility.

Hadronic Cross Section Biasing

Cross section biasing artificially enhances/reduces the cross section of a process. This may be useful for studying
thin layer interactions or thick layer shielding. The built in hadronic cross section biasing applies to photon inelastic,
electron nuclear and positron nuclear processes.

The biasing is controlled through the BiasCrossSectionByFactor method in G4HadronicProcess, as demonstrated
below.

void MyPhysicsList::ConstructProcess ()

{

G4ElectroNuclearReaction » theElectroReaction =
new G4ElectroNuclearReaction;

G4ElectronNuclearProcess theElectronNuclearProcess;
theElectronNuclearProcess.RegisterMe (theElectroReaction) ;
theElectronNuclearProcess.BiasCrossSectionByFactor (100);

pManager—>AddDiscreteProcess (&theElectronNuclearProcess) ;
(continues on next page)

3.7. Event Biasing Techniques 83

Book For Application Developers, Release 11.0

(continued from previous page)

Radioactive Decay Biasing
The G4RadioactiveDecay (GRDM) class simulates the decay of radioactive nuclei and implements the following
biasing options:

¢ Increase the sampling rate of radionuclides within observation times through a user defined probability distribu-
tion function

* Nuclear splitting, where the parent nuclide is split into a user defined number of nuclides

 Branching ratio biasing where branching ratios are sampled with equal probability

G4RadioactiveDecay is a process which must be registered with a process manager, as demonstrated below.

void MyPhysicsList::ConstructProcess ()

{

G4RadioactiveDecay* theRadioactiveDecay =
new G4RadioactiveDecay();

G4ProcessManager* pmanager = ...
pmanager —>AddProcess (theRadioactiveDecay) ;

Biasing can be controlled either in compiled code or through interactive commands. Radioactive decay biasing exam-
ples are also distributed with the GEANT4 distribution in examples/extended/radioactivedecay/exrdm.

To select biasing as part of the process registration, use

theRadioactiveDecay->SetAnalogueMonteCarlo (false) ;

or the equivalent macro command:

/grdm/analogeMC [true|false]

In both cases, true specifies that the unbiased (analogue) simulation will be done, and false selects biasing.

Limited Radionuclides

Radioactive decay may be restricted to only specific nuclides, in order (for example) to avoid tracking extremely long-
lived daughters in decay chains which are not of experimental interest. To limit the range of nuclides decayed as part
of the process registration (above), use

G4NucleusLimits limits (aMin, aMax, zMin, zMax);
theRadioactiveDecay->SetNucleusLimits (1limits);

or via the macro command

/grdm/nucleusLimits [aMin] [aMax] [zMin] [zMax]

84 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

Geometric Biasing

Radioactive decays may be generated throughout the user’s detector model, in one or more specified volumes, or
nowhere. The detector geometry must be defined before applying these geometric biases.

Volumes may be selected or deselected programmatically using

theRadioactiveDecay->SelectAllVolumes () ;
theRadioactiveDecay->DeselectAllVolumes () ;

G4LogicalVolume* aLogicalVolume; // Acquired by the user

theRadioactiveDecay->SelectVolume (aLlogicalVolume) ;
theRadioactiveDecay—->DeselectVolume (aLogicalVolume) ;

or with the equivalent macro commands
/grdm/allVolumes
/grdm/noVolumes

/grdm/selectVolume [logicalVolume]
/grdm/deselectVolume [logicalVolume]

In macro commands, the volumes are specified by name, and found by searching the G4LogicalVolumeStore.

Decay Time Biasing

The decay time function (normally an exponential in the natural lifetime) of the primary particle may be replaced with
a time profile F(t), as discussed in Section 40.6 of the Physics Reference Manual. The profile function is represented
as a two-column ASCII text file with up to 100 time points (first column) with fractions (second column).

theRadioactiveDecay->SetSourceTimeProfile (fileName) ;
theRadioactiveDecay->SetDecayBias (fileName) ;

/grdm/sourceTimeProfile [fileName]
/grdm/decayBiasProfile [fileName]

Branching Fraction Biasing
Radionuclides with rare decay channels may be biased by forcing all channels to be selected uniformly (BRBias =
true below), rather than according to their natural branching fractions (false).

theRadioactiveDecay—>SetBRBias (true) ;

/grdm/BRbias [true|false]

Nuclear Splitting

The statistical efficiency of generated events may be increased by generating multiple “copies” of nuclei in an event,
each of which is decayed independently, with an assigned weight of 1/Nsplit. Scoring the results of tracking the decay
daughters, using their corresponding weights, can improve the statistical reach of a simulation while preserving the
shape of the resulting distributions.

theRadioactiveDecay->SetSplitNuclei (Nsplit);

3.7. Event Biasing Techniques 85

Book For Application Developers, Release 11.0

/grdm/splitNucleus [Nsplit]

G4WrapperProcess

G4WrapperProcess can be used to implement user defined event biasing. G4WrapperProcess, which is a process itself,
wraps an existing process. By default, all function calls are forwarded to the wrapped process. It is a non-invasive way
to modify the behaviour of an existing process.

To use this utility, first create a derived class inheriting from G4WrapperProcess. Override the methods whose be-
haviour you would like to modify, for example, PostStepDolt, and register the derived class in place of the process to
be wrapped. Finally, register the wrapped process with G4WrapperProcess. The code snippets below demonstrate its
use.

class MyWrapperProcess : public G4WrapperProcess {

G4VParticleChange» PostStepDolt (const G4Tracké& track,
const G4Step& step) |
// Do something interesting
}
bi

void MyPhysicsList::ConstructProcess ()

{

G4eBremsstrahlung* bremProcess =
new G4eBremsstrahlung();

MyWrapperProcess* wrapper = new MyWrapperProcess();
wrapper—>RegisterProcess (bremProcess) ;

processManager—>AddProcess (wrapper, -1, -1, 3);

3.7.3 Adjoint/Reverse Monte Carlo

Another powerful biasing technique available in GEANT4 is the Reverse Monte Carlo (RMC) method, also known
as the Adjoint Monte Carlo method. In this method particles are generated on the external boundary of the sensitive
part of the geometry and then are tracked backward in the geometry till they reach the external source surface, or
exceed an energy threshold. By this way the computing time is focused only on particle tracks that are contributing
to the tallies. The RMC method is much rapid than the Forward MC method when the sensitive part of the geometry
is small compared to the rest of the geometry and to the external source, that has to be extensive and not beam like.
At the moment the RMC method is implemented in GEANT4 only for some electromagnetic processes (see Reverse
processes). An example illustrating the use of the Reverse MC method in GEANT4 is distributed within the GEANT4
toolkit in examples/extended/biasing/ReverseMCO01.

86 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

Treatment of the Reverse MC method in GEANT4

Different G4Adjoint classes have been implemented into the GEANT4 toolkit in order to run an adjoint/reverse simu-
lation in a GEANT4 application. This implementation is illustrated in Fig. 3.3. An adjoint run is divided in a series of
alternative adjoint and forward tracking of adjoint and normal particles. One GEANT4 event treats one of this tracking
phase.

Reverse Tracking of adjoint

particles from the Forward Tracking of normal
Boundary of the sensitive particles trough the
region sensitive region from the
to the External source. same starting position than

the reverse tracking.

Adjoint source External
Boundary of the region xtema
with sensitive source

components

Fig. 3.3: Schematic view of an adjoint/reverse simulation in GEANT4.

Adjoint tracking phase

Adjoint particles (adjoint_e-, adjoint_gamma,...) are generated one by one on the so called adjoint source with
random position, energy (1/E distribution) and direction. The adjoint source is the external surface of a user defined
volume or of a user defined sphere. The adjoint source should contain one or several sensitive volumes and should
be small compared to the entire geometry. The user can set the minimum and maximum energy of the adjoint source.
After its generation the adjoint primary particle is tracked backward in the geometry till a user defined external surface
(spherical or boundary of a volume) or is killed before if it reaches a user defined upper energy limit that represents the
maximum energy of the external source. During the reverse tracking, reverse processes take place where the adjoint
particle being tracked can be either scattered or transformed in another type of adjoint particle. During the reverse
tracking the G4AdjointSimulationManager replaces the user defined primary, run, stepping, ... actions, by its own
actions. A reverse tracking phase corresponds to one GEANT4 event.

Forward tracking phase

When an adjoint particle reaches the external surface its weight, type, position, and direction are registered and a
normal primary particle, with a type equivalent to the last generated primary adjoint, is generated with the same
energy, position but opposite direction and is tracked in the forward direction in the sensitive region as in a forward
MC simulation. During this forward tracking phase the event, stacking, stepping, tracking actions defined by the user
for his forward simulation are used. By this clear separation between adjoint and forward tracking phases, the code
of the user developed for a forward simulation should be only slightly modified to adapt it for an adjoint simulation
(see How to update a G4 application to use the reverse Monte Carlo mode). Indeed the computation of the signals
is done by the same actions or classes that the one used in the forward simulation mode. A forward tracking phase
corresponds to one G4 event.

3.7. Event Biasing Techniques 87

Book For Application Developers, Release 11.0

Reverse processes

During the reverse tracking, reverse processes act on the adjoint particles. The reverse processes that are at the moment
available in GEANT4 are the:

* Reverse discrete ionization for e-, proton and ions

* Continuous gain of energy by ionization and bremsstrahlung for e- and by ionization for protons and ions
* Reverse discrete e- bremsstrahlung

* Reverse photo-electric effect

* Reverse Compton scattering

* Approximated multiple scattering (see comment in Reverse multiple scattering)

It is important to note that the electromagnetic reverse processes are cut dependent as their equivalent forward pro-
cesses. The implementation of the reverse processes is based on the forward processes implemented in the G4 standard
electromagnetic package.

Nb of adjoint particle types and nb of G4 events of an adjoint simulation

The list of type of adjoint and forward particles that are generated on the adjoint source and considered in the simulation
is a function of the adjoint processes declared in the physics list. For example if only the e- and gamma electromagnetic
processes are considered, only adjoint e- and adjoint gamma will be considered as primaries. In this case an adjoint
event will be divided in four G4 event consisting in the reverse tracking of an adjoint e-, the forward tracking of its
equivalent forward e-, the reverse tracking of an adjoint gamma, and the forward tracking of its equivalent forward
gamma. In this case a run of 100 adjoint events will consist into 400 GEANT4 events. If the proton ionization is also
considered adjoint and forward protons are also generated as primaries and 600 GEANT4 events are processed for 100
adjoint events.

How to update a G4 application to use the reverse Monte Carlo mode

Some modifications are needed to an existing GEANT4 application in order to adapt it for the use of the reverse
simulation mode (see also the G4 example examples/extended/biasing/ReverseMC01). It consists into the:

* Creation of the adjoint simulation manager in the main code

* Optional declaration of user actions that will be used during the adjoint tracking phase
» Use of a special physics lists that combine the adjoint and forward processes

* Modification of the user analysis part of the code

Creation of G4AdjointSimManager in the main

The class G4AdjointSimManager represents the manager of an adjoint simulation. This static class should be created
somewhere in the main code. The way to do that is illustrated below

int main (int argc,charx* argv) {

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;

By doing this the G4 application can be run in the reverse MC mode as well as in the forward MC mode. It is important
to note that G4AdjointSimManager is not a new G4RunManager and that the creation of G4RunManager in the main
and the declaration of the geometry, physics list, and user actions to G4RunManager is still needed. The definition
of the adjoint and external sources and the start of an adjoint simulation can be controlled by G4UI commands in the
directory /adjoint.

88 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

Optional declaration of adjoint user actions

During an adjoint simulation the user stepping, tracking, stacking and event actions declared to G4RunManager are
used only during the G4 events dedicated to the forward tracking of normal particles in the sensitive region, while
during the events where adjoint particles are tracked backward the following happen concerning these actions:

* The user stepping action is replaced by G4AdjointSteppingAction that is responsible to stop an adjoint
track when it reaches the external source, exceed the maximum energy of the external source, or cross
the adjoint source surface. If needed the user can declare its own stepping action that will be called by
G4AdjointSteppingAction after the check of stopping track conditions. This stepping action can be different
that the stepping action used for the forward simulation. It is declared to G4AdjointSimManager by the follow-
ing lines of code:

G4AdjointSimManager theAdjointSimManager = G4AdjointSimManager::GetInstance();
theAdjointSimManager—>SetAdjointSteppingAction (aUserDefinedSteppingAction) ;

* No stacking, tracking and event actions are considered by default. If needed the user can declare to
G4AdjointSimManager stacking, tracking and event actions that will be used only during the adjoint tracking
phase. The following lines of code show how to declare these adjoint actions to G4AdjointSimManager:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;
theAdjointSimManager—->SetAdjointEventAction (aUserDefinedEventAction) ;
theAdjointSimManager—>SetAdjointStackingAction (aUserDefinedStackingAction) ;
theAdjointSimManager—>SetAdjointTrackingAction (aUserDefinedTrackingAction) ;

By default no user run action is considered in an adjoint simulation but if needed such action can be declared to
G4AdjointSimManager as such:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;
theAdjointSimManager—>SetAdjointRunAction (aUserDefinedRunAction) ;

Physics list for reverse and forward electromagnetic processes

To run an adjoint simulation a specific physics list should be used where existing G4 adjoint electromagnetic pro-
cesses and their forward equivalent have to be declared. An example of such physics list is provided by the class
G4AdjointPhysicsLits in the G4 example extended/biasing/ReverseMC01.

Modification in the analysis part of the code

The user code should be modified to normalize the signals computed during the forward tracking phase to the weight
of the last adjoint particle that reaches the external surface. This weight represents the statistical weight that the last
full adjoint tracks (from the adjoint source to the external source) would have in a forward simulation. If multiplied
by a signal and registered in function of energy and/or direction the simulation results will give an answer matrix of
this signal. To normalize it to a given spectrum it has to be furthermore multiplied by a directional differential flux
corresponding to this spectrum The weight, direction, position , kinetic energy and type of the last adjoint particle
that reaches the external source, and that would represents the primary of a forward simulation, can be gotten from
G4AdjointSimManager by using for example the following line of codes

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;

G4String particle_name = theAdjointSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack();
G4int PDGEncoding= theAdjointSimManager->GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack () ;
G4double weight = theAdjointSimManager->GetWeightAtEndOfLastAdjointTrack () ;

G4double Ekin = theAdjointSimManager->GetEkinAtEndOfLastAdjointTrack () ;

G4double Ekin_per_nuc=theAdjointSimManager->GetEkinNucAtEndOfLastAdjointTrack(); // for ions
G4ThreeVector dir = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
G4ThreeVector pos = theAdjointSimManager->GetPositionAtEndOfLastAdjointTrack () ;

3.7. Event Biasing Techniques 89

Book For Application Developers, Release 11.0

In order to have a code working for both forward and adjoint simulation mode, the extra code needed in user actions
or analysis manager for the adjoint simulation mode can be separated to the code needed only for the normal forward
simulation by using the following public method of G4AdjointSimManager:

G4bool GetAdjointSimMode () ;

that returns true if an adjoint simulation is running and false if not.

The following code example shows how to normalize a detector signal and compute an answer matrix in the case of
an adjoint simulation.

Listing 3.5: Normalization in the case of an adjoint simulation. The de-
tector signal S computed during the forward tracking phase is normalized
to a primary source of e- with a differential directional flux given by the
function F. An answer matrix of the signal is also computed.

G4double S = ...; // signal in the sensitive volume computed during a forward tracking phase

//Normalization of the signal for an adjoint simulation

G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance () ;

if (theAdjSimManager->GetAdjointSimMode ()) {
G4double normalized_S=0.; //normalized to a given e- primary spectrum
G4double S_for_answer_matrix=0.; //for e- answer matrix

if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-") {
G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack () ;
G4ThreeVector dir_prim = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack () ;
S_for_answer_matrix = Sxweight_prim;
normalized_S = S_for_ answer_matrix+F (ekin_prim,dir);

// F(ekin_prim,dir_prim) gives the differential directional flux of primary e-

}

//follows the code where normalized S and S_for_answer_matrix are registered or whatever

//analysis/normalization code for forward simulation
else {

Control of an adjoint simulation

The G4UI commands in the directory /adjoint. allow the user to :

* Define the adjoint source where adjoint primaries are generated
* Define the external source till which adjoint particles are tracked
e Start an adjoint simulation

920 Chapter 3. Toolkit Fundamentals

AllResources/Control/UIcommands/_adjoint_.html

Book For Application Developers, Release 11.0

Known issues in the Reverse MC mode

Occasional wrong high weight in the adjoint simulation

In rare cases an adjoint track may get a wrong high weight when reaching the external source. While this happens not
often it may corrupt the simulation results significantly. This happens in some tracks where both reverse photo-electric
and bremsstrahlung processes take place at low energy. We still need some investigations to remove this problem at
the level of physical adjoint/reverse processes. However this problem can be solved at the level of event actions or
analysis in the user code by adding a test on the normalized signal during an adjoint simulation. An example of such
test has been implemented in the GEANT4 example extended/biasing/ReverseMCO01. In this implementation an event
is rejected when the relative error of the computed normalized energy deposited increases during one event by more
than 50% while the computed precision is already below 10%.

Reverse bremsstrahlung

A difference between the differential cross sections used in the adjoint and forward bremsstrahlung models is the
source of a higher flux of >100 keV gamma in the reverse simulation compared to the forward simulation mode.
In principle the adjoint processes/models should make use of the direct differential cross section to sample the ad-
joint secondaries and compute the adjoint cross section. However due to the way the effective differential cross
section is considered in the forward model G4eBremsstrahlungModel this was not possible to achieve for the reverse
bremsstrahlung. Indeed the differential cross section used in G4AdjointeBremstrahlungModel is obtained by the nu-
merical derivation over the cut energy of the direct cross section provided by G4eBremsstrahlungModel. This would
be a correct procedure if the distribution of secondary in G4eBremsstrahlungModel would match this differential
cross section. Unfortunately it is not the case as independent parameterization are used in G4eBremsstrahlungModel
for both the cross sections and the sampling of secondaries. (It means that in the forward case if one would integrate
the effective differential cross section considered in the simulation we would not find back the used cross section). In
the future we plan to correct this problem by using an extra weight correction factor after the occurrence of a reverse
bremsstrahlung. This weight factor should be the ratio between the differential CS used in the adjoint simulation and
the one effectively used in the forward processes. As it is impossible to have a simple and direct access to the forward
differential CS in G4eBremsstrahlungModel we are investigating the feasibility to use the differential CS considered
in G4Penelope models.

Reverse multiple scattering

For the reverse multiple scattering the same model is used than in the forward case. This approximation makes that
the discrepancy between the adjoint and forward simulation cases can get to a level of ~ 10-15% relative differences
in the test cases that we have considered. In the future we plan to improve the adjoint multiple scattering models by
forcing the computation of multiple scattering effect at the end of an adjoint step.

3.7.4 Generic Biasing

The generic biasing scheme provides facilities for:

* physics-based biasing, to alter the behavior of existing physics processes:
— biasing of physics process interaction occurrence,
— biasing of physics process final state production;
* non-physics-based biasing, to introduce or remove particles in the simulation but without affecting the existing
physics processes, with techniques like, but not limited to
— splitting,
— Russian roulette (killing).

3.7. Event Biasing Techniques 91

Book For Application Developers, Release 11.0

Decisions on what techniques to apply are taken on a step by step and intra-step basis, hence providing a lot of
flexibility.

The scheme has been introduced in 10.0, with new features and some non-backward compatible changes introduced in
10.1 and 10.2; these are documented in Changes from 10.0 to 10.1 and Changes from 10.1 to 10.2. Parallel geometry
capability has been introduced in 10.3.

Overview

The generic biasing scheme relies on two abstract classes, that are meant to model the biasing problems. You have to
inherit from them to create your own concrete classes, or use some of the concrete instances provided (see Existing
biasing operations, operator and interaction laws), if they respond to your case. A dedicated process provides the
interface between these biasing classes and the tracking. In case of parallel geometry usage, an other process handles
the navigation in these geometries.

The two abstract classes are:

* G4VBiasingOperation: which represents a simple, or “atomic” biasing operation, like changing a process
interaction occurrence probability, or changing its final state production, or making a splitting operation, etc.
For the occurrence biasing case, the biasing is handled with an other class, * * G4VBiasingInteractionLaw" *,
which holds the properties of the biased interaction law. An object of this class type must be provided by the
occurrence biasing operation returned.

* G4VBiasingOperator: which purpose is to make decisions on the above biasing operations to be applied.
It is attached to a G4Logical Volume and is the pilot of the biasing in this volume. An operator may decide to
delegate to other operators. An operator acts only in the G4LogicalVolume itis attached to. In volumes with

no biasing operator attached, the usual tracking is applied.
The process acting as interface between the biasing classes and the tracking is:

* G4BiasingProcessInterface: itisaconcrete GAVProcess implementation. It interrogates the current
biasing operator, if any, for biasing operations to be applied. The G4BiasingProcessInterface can
either:

— hold a physics process that it wraps and controls: in this case it asks the operator for physics-based biasing
operations (only) to be applied to the wrapped process,

— not hold a physics process: in this case it asks the operator for non-physics-based biasing operations (only):
splitting, killing, etc.

e The G4BiasingProcessInterface class provides many information that can be used by the biasing op-

erator. Each G4BiasingProcessInterface provides its identity to the biasing operator it calls, so that
the operator has this information but also information of the underneath wrapped physics process, if it is the
case.
The G4BiasingProcessInterface can be asked for all other G4BiasingProcessInterface in-
stances at play on the current track. In particular, this allows the operator to get all cross-sections at the current
point (feature available since 10.1). The code is organized in such a way that these cross-sections are all available
at the first call to the operator in the current step.

* To make G4BiasingProcessInterface instances wrapping physics processes, or to insert instances not
holding a physics process, the physics list has to be modified -the generic biasing approach is hence invasive to
the physics list-. The way to configure your physics list and related helper tools are described below.

The process handling parallel geometries is:

* G4ParallelGeometriesLimiterProcess,itisaconcrete G4VProcess implementation, which takes
care of limiting the step on the boundaries of parallel geometries.

e A single instance of G4ParallelGeometriesLimiterProcess handles all parallel ge-
ometries to be considered for a particle type. It collects these geometries by means of
myLimiterProcess—>AddParallelWorld ("myParallelGeometry") calls.

Given such a process is attached to a particle type, parallel geometries are hence specified per particle type.

92 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

» Attaching an instance of this process to a given particle type, and specifying the parallel geometries to be
considered is eased by the helper tools as explained below.

Getting Started

Examples

Seven “Generic Biasing (GB)” examples are proposed (they have been introduced in 10.0, 10.1, 10.3 and 10.6):

* examples/extended/biasing/GB01:

— which shows how biasing of process cross-section can be done.

— This example uses the physics-based biasing operation G4BOptnChangeCrossSection de-
fined in geant4/source/processes/biasing/generic. This operation performs
the actual process cross-section change. In the example a first G4VBiasingOperator,
GB01BOptrChangeCrossSection, configures and selects this operation. This operator applies to
only one particle type.

— To allow several particle types to be biased, a second G4VBiasingOperator,
GBO1BOptrMultiParticleChangeCrossSection, is implemented, and which holds a
GB01BOptrChangeCrossSection operator for each particle type to be biased. This second operator
then delegates to the first one the handling of the biasing operations.

* examples/extended/biasing/GB02:

— which shows how a “force collision” scheme very close to the MCNP one can be activated.

— This second example has a quite similar approach than the GBO1 one, with a G4VBiasingOperator,
QGB02BOptrMultiParticleForceCollision, that holds as many operators than particle types
to be biased, this operators being of G4BOptrForceCollision type.

— This G4BOptrForceCollision operator is defined in source/processes/biasing/
generic. It combines several biasing operations to build-up the needed logic (see Setting up the ap-
plication). It can be in particular looked at to see how it collects and makes use of physics process cross-
sections.

* examples/extended/biasing/GB03:

— which implements a kind of importance geometry biasing, using the generic biasing classes.

— The example uses a simple sampling calorimeter. On the boundary of the absorber parts, it does splitting
(killing) if the track is moving forward (backward). As the splitting can be too strong in some cases, falling
into an over-splitting situation, even with a splitting by a factor 2, a technique is introduced to alleviate
the problem : a probability to apply the splitting (killing) is introduced, and with proper tuning of this
probability, the over-splitting can be avoided.

* examples/extended/biasing/GB04:

— which implements a bremsstrahlung splitting. Bremsstrahlung splitting exists in the EM package. In the
present example, it is shown how to implement a similar technique, using the generic biasing classes.

— A biasing operator, GBO4BOptrBremSplitting, sends a final state biasing operation,
GB04BOptnBremSplitting, for the bremsstrahlung process. Splitting factor, and options to
control the biasing are available through command line.

* examples/extended/biasing/GB05:

— which illustrates a technique that uses physics cross-sections to determine the splitting[killing] rate in a
shielding problem, it is applied to neutrons. This technique is supposed to be an invention, to illustrate a
technique combining physics-based information with splitting/killing.

— In the classical treatment of the shielding problem, the shield is divided in slices at the boundaries of which
particles are splitted[killed] if moving forward[backward]. In the present technique, we collect the cross-
sections of “absorbing/destroying” processes : decay, capture, inelastic. We then use the generic biasing
facilities to create an equivalent of a splitting process, that has a “cross-section” which is the sum of the
previous ones. This process is competing with other processes, as a regular one. When this process wins
the competition, it splits the track, with a splitting factor 2. This splitting is hence occurring at the same
rate than the absorption, resulting in an expected maintained (unweighted) flux.

3.7. Event Biasing Techniques 93

Book For Application Developers, Release 11.0

— GB05BOptrSplitAndKillByCrossSectionand GRO5BOptnSplitAndKillByCrossSection
are respectively the biasing operator and operation. The operator collects the absorbing cross-sections
at the beginning of the step, passes them to the operation, requests it to sample the distance to its next
interaction, and returns this operation to the calling G4BiasingProcessInterface as the operation
to be applied in the step.

— The operation interaction distance is then proposed by the calling G4BiasingProcessInterface
and, if being the shortest of the interaction distances, the operation final state generation (the splitting) is
applied by the process.

* examples/extended/biasing/GB06:

— which demonstrates the use of parallel geometries in generic biasing, on a classical shield problem, using
geometry-based importance biasing.

— The mass geometry consists of a single block of concrete; it is overlayed by a parallel geometry defining
the slices used for splitting/killing.

— The navigation capability in the parallel geometry is activated in the main program, by means of the physics
list constructor.

* examples/extended/biasing/GB07:

— which demonstrates the use of the leading particle biasing technique in generic biasing.

— The mass geometry consists of a block of concrete in which the biasing is applied. A thin volume then
follows to score (simple printing) the particles leaving the block of concrete.

Setting up the application

For making an existing G4VBiasingOperator used by your application, you have to do two things:

1. Attach the operator to the G4LogicalVolume where the biasing should take place: You have to make this
attachment in your ConstructSDandField () method (to make your application both sequential and MT-
compliant):

Listing 3.6: Attachment of a G4BiasingOperator to a
G4LogicalVolume. We assume such a volume has been cre-
ated with name “volumeWithBiasing”, and we assume that a biasing
operator class MyBiasingOperator has been created, inheriting
from G4VBiasingOperator:

// Fetch the logical volume pointer by name (it is an example, not a mandatory way) :

G4LogicalVolume* biasingVolume = G4LogicalVolumeStore::GetInstance () ->GetVolume (

—"volumeWithBiasing") ;

// Create the biasing operator:

MyBiasingOperator* myBiasingOperator = new MyBiasingOperator ("ExampleOperator");

// Attach it to the volume:

myBiasingOperator->AttachTo (biasingVolume) ;

2. Setup the physics list you use to properly include the needed G4BiasingProcessInterface instances.
You have several options for this.

* The easiest way is if you use a pre-packaged physics list (e.g. FTFP_BERT, QGSP...). As such a physics
list is of G4VModularPhysicsList type, you can alter it with a G4VPhysicsConstructor. The
constructor G4GenericBiasingPhysics is meant for this. It can be used, typically in your main
program, as:

94 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

Listing 3.7: Use of the G4GenericBiasingPhysics
physics constructor to setup a pre-packaged physics list (of
G4VModularPhysicsList type). Here we assume the FTFP_BERT
physics list, and we assume that runManager is a pointer on a created
G4RunManager or G4ARMTunManager object.

// Instantiate the physics list:

FTFP_BERT* physicsList = new FTFP_BERT;

// Create the physics constructor for biasing:
G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics();
// Tell what particle types have to be biased:
biasingPhysics->Bias ("gamma") ;

biasingPhysics->Bias ("neutron");

// Register the physics constructor to the physics list:
physicsList->RegisterPhysics (biasingPhysics) ;

// Set this physics list to the run manager:
runManager—>SetUserInitialization (physicsList) ;

Doing so, all physics processes will be wrapped, and, for example, the gamma conversion process,
"conv", will appear as "biasWrapper (conv)" when dumping the processes (/particle/
process/dump). An additional "biasWrapper (0) " process, for non-physics-based biasing is also
inserted.

Other methods to specifically chose some physics processes to be biased or to insert only
G4BiasingProcessInterface instances for non-physics-based biasing also exist.

e The second way is useful if you write your own physics list, and if this one is not a modular physics
list, but inherits directly from the lowest level abstract class G4VUserPhysicsList. In this case,
the above solution with G4GenericBiasingPhysics does not apply. Instead you can use the
G4BiasingHelper utility class (this one is indeed used by G4GenericBiasingPhysics).

Listing 3.8: Use of the G4BiasingHelper utility class to
setup a physics list for biasing in case this physics list is not
of G4VModularPhysicsList type but inherits directly from
G4VUserPhysicsList.

// Get physics list helper:
G4PhysicsListHelperx ph = G4PhysicsListHelper::GetPhysicsListHelper();

// Assume "particle" is a pointer on a G4ParticleDefinition object
G4String particleName = particle->GetParticleName () ;

if (particleName == "gamma")

{

ph->RegisterProcess (new G4PhotoElectricEffect , particle);
ph->RegisterProcess (new G4ComptonScattering , particle);
ph->RegisterProcess (new G4GammaConversion , particle);
G4ProcessManager* pmanager = particle->GetProcessManager ();
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "phot");
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "compt");
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "conv");
G4BiasingHelper: :ActivateNonPhysicsBiasing (pmanager) ;

}

* A last way to setup the physics list is by direct insertion of the G4BiasingProcessInterface in-
stances, but this requires solid expertise in physics list creation.

In case you also use parallel geometries, you have to make the generic biasing sensitive to these. Assum-
ing you have created three parallel geometries with names "parallelWorldl", "parallelWorld2" and
"parallelWorld3" that you want to be active for neutrons, the additional calls you have to make compared
to example EviBias.GenericBiasing. Overview.UsePhysConstructor above are simply:

3.7. Event Biasing Techniques 95

Book For Application Developers, Release 11.0

Listing 3.9: Calls to activate parallel geometry navigation

// —-— activate parallel geometries for neutrons:

biasingPhysics->AddParallelGeometry ("neutron”, "parallelWorldl");
biasingPhysics—>AddParallelGeometry ("neutron", "parallelWorld2") ;
biasingPhysics->AddParallelGeometry ("neutron”, "parallelWorld3");

It is also possible, even though less convenient, to use the G4BiasingHelper utility class making
calls to the static method limiter = G4BiasingHelper::AddLimiterProcess (pmanager,
"limiterProcessName") inaddition to the ones of example EvtBias.GenericBiasing. Overview.UseBiasingHelper
above. This call returns a pointer 1imiter on the constructed G4ParallelGeometriesLimiterProcess
process, setting its name as "limiterProcessName", this pointer has then to be used to specify the parallel
geometries to the process : limiter—>AddParallelWorld ("parallelWorldl")...

Existing biasing operations, operator and interaction laws

Below are the set of available concrete biasing operations, operators and interaction laws. These are defined in
source/processes/biasing/generic. Please note that several examples (Examples) also implement dedi-
cated operators and operations.

* Concrete implementation classes of G4VBiasingOperation:

— G4BOptnCloning: a non-physics-based biasing operation that clones the current track. Each of the two
copies is given freely a weight.

— G4BOptnChangeCrossSection: a physics-based biasing operation to change one process cross-
section

— G4BOptnForceFreeFlight: a physics-based biasing operation to force a flight with no interaction
through the current volume. This operation is better said a “silent flight”: the flight is conducted under a
zero weight, and the track weight is restored at the end of the free flight, taking into account the cumulative
weight change for the non-interaction flight. This special feature is because this class in used in the MCNP-
like force collision scheme G4BOptrForceCollision.

— G4BOptnForceCommonTruncatedExp: a physics-based biasing operation to force a collision inside
the current volume. It is “common” as several processes may be forced together, driving the related
interaction law by the sum of these processes cross-section. The relative natural occurrence of processes
is conserved. This operation makes use of a “truncated exponential” law, which is the exponential law
limited to a segment [0,L], where L is the distance to exit the current volume.

— G4BOptnLeadingParticle: a non-physics-based biasing operation that implements a Leading Par-
ticle Biasing scheme. The technique can be applied to hadronic, electromagnetic et decay processes. At
each interaction point, are kept:

the leading particle (highest energy track),

* one particle of each species (considering particles and anti-particles as of same species, and all parti-
cles with Z >= 2 as one species).

A Russian roulette is additionnally played on the surviving non-leading tracks. This is specially of in-
terest for electromagnetic processes as these have low multiplicities, making unaffected the final state if
applying the above algorithm. The default killing probability is 2/3, but can be changed by the void
SetFurtherKillingProbability (G4double p) method.

* Concrete implementation class of G4VBiasingOperator:

— G4BOptrForceCollision: abiasing operator that implements a force collision scheme quite close to
the one provided by MCNP. It handles the scheme though the following sequence:

1. The operator starts by using a G4BOptnCloning cloning operation, making a copy of the primary
entering the volume. The primary is given a zero weight.

2. The primary is then transported through to the volume, without interactions. This is done with the
operator requesting forced free flight G4BOptnForceFreeFlight operations to all physics pro-
cesses. The weight is zero to prevent the primary to contribute to scores. This flight purpose is to
accumulate the probability to fly through the volume without interaction. When the primary reaches

96 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.0

the volume boundary, the first free flight operation restores the primary weight to its initial weight
and all operations multiply this weight by their weight for non-interaction flight. The operator then
abandons here the primary track, letting it back to normal tracking.

3. The copy of the primary track starts and the track is forced to interact in the volume, using the
G4BOptnForceCommonTruncatedExp operation, itself using the total cross-section to compute
the forced interaction law (exponential law limited to path length in the volume). One of the physics
processes is randomly selected (on the basis of cross-section values) for the interaction.

4. Other processes are receiving a forced free flight operation, from the operator.

5. The copy of the primary is transported up to its interaction point. With these operations configured, the
G4BiasingProcessInterface instances have all needed information to automatically compute
the weight of the primary track and of its interaction products.

As this operation starts on the volume boundary, a single force interaction occurs: if the track survives
the interaction (e.g Compton process), as it moved apart the boundary, the operator does not consider it
further.

* G4VBiasingInteractionLaw classes. These classes describe the interaction law in term of a non-
interaction probability over a segment of length I, and an “effective” cross-section for an interaction at distance
1 (see Physics Reference Manual, section generic biasing). An interaction law can also be sampled.

— G4InteractionLawPhysical: the usual exponential law, driven by a cross-section constant over a
step. The effective cross-section is the cross-section.

— G4ILawForceFreeFlight: an “interaction” law for, precisely, a non-interacting track, with non-
interaction probability always 1, and zero effective cross-section. It is a limit case of the modeling.

— G4ILawTruncatedExp: an exponential interaction law limited to a segment [0,L]. The non-interaction
probability and effective cross-section depend on I, the distance travelled, and become zero and infinite,
respectively, at 1=L.

Changes from 10.0 to 10.1

The G4VBiasingOperation class has been evolved to simplify the interface. The changes regard physics-based
biasing (occurrence biasing and final state biasing) and are:

e Suppression of the method virtual G4ForceCondition ProposeForceCondition (const
G4ForceCondition wrappedProcessCondition)
— The functionality has been kept, absorbing the ProposeForceCondition (...) method by the
ProvideOccurenceBiasingInteractionLaw (.. .) one, which has now the signature:

virtual const G4VBiasingInteractionLawx
ProvideOccurenceBiasingInteractionLaw (const
G4BiasingProcessInterfacex callingProcess, G4ForceConditioné&
proposeForceCondition) = 0;

— The value of proposeForceCondition passed to the method is the G4ForceCondition value of
the wrapped process, as this was the case with deprecated method ProposeForceCondition (. ..)

 Suppression of the virtual method “G4bool DenyProcessPostStepDolt(const G4BiasingProcessInterface* call-
ingProcess, const G4Track* track, const G4Step* step, G4double& proposedTrackWeight)”:

— This method was used to prevent the wrapped process hold by callingProcess to have its
PostStepDoIt (...) called, providing a weight for this non-call.

— The method has been removed, but the functionality still exists, and has been merged and generalized with
the change of the pure virtual ApplyFinalStateBiasing (.. .) described just after.

» Extra argument G4bools& forceBiasedFinalState added as last argu-
ment of virtual G4VParticleChangex ApplyFinalStateBiasing(const
G4BiasingProcessInterfacex callingProcess, const G4Trackx track, const
G4Step* step, G4bools& forceBiasedFinalState) = 0

— This method is meant to return a final state interaction through the G4VParticleChange. The final
state may be the analog wrapped process one, or a biased one, which comes with its weight correction

3.7. Event Biasing Techniques 97

Book For Application Developers, Release 11.0

for biasing the final state. If an occurrence biasing is also at play in the same step, the weight correction
for this biasing is applied to the final state before this one is returned to the stepping. This is the default
behavior. This behavior can be controlled by forceBiasedFinalState:

* If forceBiasedFinalState isleft false, the above default behavior is applied.

If forceBiasedFinalState is set to true, the G4VParticleChange final state will be
returned as is to the stepping, and that, regardless there is an occurrence at play. Hence, when setting
forceBiasedFinalState to true, the biasing operation takes full responsibility for the total
weight (occurrence + final state) calculation.

* Deletion of G4ILawCommonTruncatedExp, which could be eliminated after better implementation of
G4BOptnForceCommonTruncatedExp operation.

Changes from 10.1 to 10.2

Changes in 10.2 derive from the introduction of the track feature G4VAuxiliaryTrackInformation. They
regard essentially the force collision operator G4BOpt rForceCollision and related features. These changes are
transparent to the user if using G4BOptrForceCollision and following examples/extended/biasing/
GBO02. The information below are provided for developers of biasing classes.

The G4VAuxiliaryTrackInformation functionality allows to extend the G4Track attributes with an in-
stance of a concrete class deriving from G4VAuxiliaryTrackInformation. Such an object is registered
to the G4Track using an ID that has to be previously obtained from the G4PhysicsModelCatalog. The
G4VBiasingOperator class defines two new virtual methods, Configure () and ConfigureForWorker (),
to help with the creation of these ID ' s at the proper time (see G4BOptrForceCollision as an example).

Before 10.2, the G4BOptrForceCollision class was using state variables to make the bookkeeping of the
tracks handled by the scheme. Now this bookkeeping is handled using a G4VAuxiliaryTrackInformation,
G4BOptrForceCollisionTrackData.

To help with the bookkeeping, the base class G4AVBiasingOperator was defining a set of methods
(GetBirthOperation(..), RememberSecondaries(..), ForgetTrack (..)), these have been re-
moved in 10.2 and are easy to overpass with a dedicated G4VAuxiliaryTrackInformation.

98 Chapter 3. Toolkit Fundamentals

CHAPTER
FOUR

DETECTOR DEFINITION AND RESPONSE

4.1 Geometry

4.1.1 Introduction

The detector definition requires the representation of its geometrical elements, their materials and electronics prop-
erties, together with visualization attributes and user defined properties. The geometrical representation of detector
elements focuses on the definition of solid models and their spatial position, as well as their logical relations to one
another, such as in the case of containment.

GEANT4 uses the concept of “Logical Volume” to manage the representation of detector element properties. The
concept of “Physical Volume” is used to manage the representation of the spatial positioning of detector elements
and their logical relations. The concept of “Solid” is used to manage the representation of the detector element solid
modeling. Volumes and solids must be dynamically allocated using ‘new’ in the user program; they must not be
declared as local objects. Volumes and solids are automatically registered on creation to dedicated stores; these stores
will delete all objects at the end of the job.

4.1.2 Solids

The GEANT4 geometry modeller implements Constructive Solid Geometry (CSG) representations for geometrical
primitives. CSG representations are easy to use and normally give superior performance.

All solids must be allocated using ‘new’ in the user’s program; they get registered to a G4SolidStore at construc-
tion, which will also take care to deallocate them at the end of the job, if not done already in the user’s code.

All constructed solids can stream out their contents via appropriate methods and streaming operators.
For all solids it is possible to estimate the geometrical volume and the surface area by invoking the methods:

G4double GetCubicVolume ()
G4double GetSurfaceArea ()

which return an estimate of the solid volume and total area in internal units respectively. For elementary solids the
functions compute the exact geometrical quantities, while for composite or complex solids an estimate is made using
Monte Carlo techniques.

For all solids it is also possible to generate pseudo-random points lying on their surfaces, by invoking the method

G4ThreeVector GetPointOnSurface () const

which returns the generated point in local coordinates relative to the solid. To be noted that this function is not meant
to provide a uniform distribution of points on the surfaces of the solids.

99

Book For Application Developers, Release 11.0

Since release 10.3, solids can be scaled in their dimensions along the Cartesian axes X, Y or Z, by providing a scale
transformation associated to the original solid.

G4ScaledSolid(const G4Strings& pName,
G4vVSolid* pSolid ,
const G4Scale3D& pScale)

Note: GEANT4 does not impose any restriction on the name assigned to solids; names can be shared. It is however
good practice to specify unique names for each constructed solid, to allow for easier retrivial from stores for post-
processing use.

Constructed Solid Geometry (CSG) Solids

CSG solids are defined directly as three-dimensional primitives. They are described by a minimal set of parameters
necessary to define the shape and size of the solid. CSG solids are Boxes, Tubes and their sections, Cones and their
sections, Spheres, Wedges, and Toruses.

Box:

To create a box one can use the constructor:

G4Box (const G4String& pName,
G4double pX,
G4double pY,
G4double pZ)

In the picture:
pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

’ pX \ half length in X \ pY \ half lengthin Y \ PZ \ half length in Z

This will create a box that extends from —pX to +pX in X, from —pY to +pY in Y, and from —pZ to +p?Z in Z.

For example to create a box that is 2 by 6 by 10 centimeters in full length, and called BoxA one should use the
following code:

G4Box* aBox = new G4Box ("BoxA", 1.0xcm, 3.0xcm, 5.0%cm);

Cylindrical Section or Tube:

Similarly to create a cylindrical section or tube, one would use the constructor:

100 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

G4Tubs (const G4String& pName,
G4double pRMin,
G4double pRMax,
G4double pDz,
G4double pSPhi,
G4double pDPhi)

In the picture:
PRMin = 10, pRMax = 15, pDz = 20

giving its name pName and its parameters which are:

pRMin | Inner radius

PRMax

Outer radius

pDz Half length in Z

pSPhi

Starting phi angle in radians

pDPhi | Angle of the segment in radians

Cylindrical Cut Section or Cut Tube:

A cutin Z can be applied to a cylindrical section to obtain a cut tube. The following constructor should be used:

G4CutTubs (const G4Stringé
G4double
G4double
G4double
G4double

pName,
pRMin,
PRMax,
pDz,

pSPhi,

G4double pDPhi,
G4ThreeVector pLowNorm,
G4ThreeVector pHighNorm)

In the picture:

pPRMin = 12, pRMax = 20, pDbz = 30,
pSPhi = 0, pDPhi = 1.5xpi, pLowNorm =
(0,-0.7,-0.71), pHighNorm = (0.7,0,0.
71)

giving its name pName and its parameters which are:

4.1. Geometry

101

Book For Application Developers, Release 11.0

PRMin Inner radius PRMax Outer radius

pDz Half length in Z pSPhi Starting phi angle in radians
pDPhi Angle of the segment in radians | pLowNorm | Outside Normal at -Z
pHighNorm | Outside Normal at +Z

Cone or Conical section:

Similarly to create a cone, or conical section, one would use the constructor

G4Cons (const G4Strings& pName,
G4double pRminl,
G4double pRmaxl,
G4double pRmin2,
G4double pRmax2,
G4double pDz,
G4double pSPhi,
G4double pDPhi)

In the picture:

PRminl = 5, pRmaxl = 10, PRmin2 =
20, pRmax2 = 25, pbz = 40, pSPhi = 0,
pDPhi = 4/3xPi

giving its name pName, and its parameters which are:

pRminl | inside radius at —pDz pRmax1 | outside radius at —pDz

pPRmin2 | inside radius at +pDz pRmax2 | outside radius at +pDz

pDz half length in Z pSPhi starting angle of the segment in radians
pDPhi the angle of the segment in radians

Parallelepiped:

A parallelepiped is constructed using:

G4Para (const G4String& pName,
G4double dx, _4—02
G4double dy,
G4double dz,
G4double alpha,
G4double theta, ey
G4double phi)

In the picture:
dx = 30, dy

Il
sy
o
<
(o
N
Il
o
o

giving its name pName and its parameters which are:

102 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

dx, dy, Half-length in x,y,z
dz
alpha Angle formed by the Y axis and by the plane joining the centre of the faces parallel to the Z-X plane
at -dy and +dy
theta Polar angle of the line joining the centres of the faces at -dz and +dz in Z
phi Azimuthal angle of the line joining the centres of the faces at -dz and +dz in Z
Trapezoid:

To construct a trapezoid use:

G4Trd (const G4String& pName,
G4double dx1,
G4double dx2,
G4double dyl,
G4double dy2,
G4double dz)

In the picture:
dxl = 30, dx2 = 10, dyl = 40, dy2 =
15, dz = 60

to obtain a solid with name pName and parameters

dx1 | Half-length along X at the surface positioned at —dz
dx2 | Half-length along X at the surface positioned at +dz
dyl | Half-length along Y at the surface positioned at —dz
dy2 | Half-length along Y at the surface positioned at +dz
dz Half-length along Z axis

Generic Trapezoid:

To build a generic trapezoid, the G4Trap class is provided. G4Trap is a solid with six trapezoidal faces, it has two
bases parallel to the XY-plane and four lateral faces. The bases are located at the same distance from the XY-plane,
but on opposite sides from it. Each of the bases has two edges parallel the X-axis. Let’s call the line joining middle
point of these edges - the centre line of the base, and the middle point of this line - the centre of the base. An important
property of G4Trap is that the line joining the centres of the bases goes through the origin of the local coordinate
system.

G4Trap has three main constructors; for a Right Angular Wedge, for a general trapezoid and a constructor from eight
points:

4.1. Geometry 103

Book For Application Developers, Release 11.0

G4Trap (const G4Strings& pName,
G4double pZ,
G4double pY,
G4double pX,
G4double pLTX)
G4Trap (const G4String& pName,
G4double pDz, G4double,
—pTheta,
G4double pPhi, G4double pDyl,
G4double pDxl, G4double pDx2,
G4double pAlpl, G4double pDy2,
gijouiie p2§3é) G4double pDx4, Inthelﬁctunz
oubie PP pDx1 = pDx2 = 40, pDyl = 40, pDx3
GATrap (const G4String& pName, = 10, pbx4 = 14, pby2 = 16, pDz = 60,
const G4ThreeVector pt([8]) pTheta = 20+«Degree, pPhi = 5xDegree,
pPAlpl = pAlp2 = 10*Degree
Y
oA
TX
pL\ 0.5 pY tan(a)
\\\\\ X
J—‘./\
to obtain a Right Angular Wedge with name pName and parameters:
pZ Length along Z
pY Length along Y
pX Length along X at the wider side
pLTX | Length along X at the narrower side (p1 TX<=pX)

The angle between the Y-axis and the centre lines of the bases in case of Right Angular Wedge is defined by the
following expression:

tan(alpha) = 0.5 * (pLTX - pX) / pY

or, to obtain the general trapezoid:

pDz Half Z length - distance from the origin to the bases
pTheta | Polar angle of the line joining the centres of the bases at -/+pDz
pPhi Azimuthal angle of the line joining the centre of the base at -pDz to the centre of the base at +pDz
pDyl Half Y length of the base at -pDz
pDy2 Half Y length of the base at +pDz
pDx1 Half X length at smaller Y of the base at -pDz
pDx2 Half X length at bigger Y of the base at -pDz
pDx3 Half X length at smaller Y of the base at +pDz
pDx4 Half X length at bigger y of the base at +pDz
pAlpl Angle between the Y-axis and the centre line of the base at -pDz (lower endcap)
PAlp?2 Angle between the Y-axis and the centre line of the base at +pDz (upper endcap)
104 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Note: The angle pAlphl and pAlph2 have to be the same due to the planarity condition.

or, to obtain from eight points with name pName:

pt | Coordinates of the vertices

pt[0],pt[1] | Edge with smaller Y of the base at -z

9 p

| Edge with bigger Y of the base at -z

b p

pt[2],pt[3]
pt[4],pt[5] | Edge with smaller Y of the base at +z
ptl[6],pt[7] | Edge with bigger Y of the base at +z

Array of vertices is given as a sequence of four edges parallel to the X-axis, first two edges define the base at -z, next
two edges define the base at +z. First point in edge should have smaller X.

Note: The following properties of G4Trap should be respected: (a) Lateral faces should be planar; (b) The line

joining the centers of the bases should go through the origin

Sphere or Spherical Shell Section:

To build a sphere, or a spherical shell section, use:

G4Sphere (const G4Stringé& pName,
G4double pRmin,
G4double pRmax,
G4double pSPhi,
G4double pDPhi,
G4double pSTheta,
G4double pDTheta)

In the picture:

PRmin = 100, pRmax = 120, pSPhi =
OxDegree, pDPhi = 180xDegree, pSTheta
= 0 Degree, pDTheta = 180*Degree

to obtain a solid with name pName and parameters:

PRmin Inner radius

PRmax Outer radius

pSPhi Starting Phi angle of the segment in radians
pDPhi Delta Phi angle of the segment in radians
pSTheta | Starting Theta angle of the segment in radians
pDTheta | Delta Theta angle of the segment in radians

Full Solid Sphere:
To build a full solid sphere use:

4.1. Geometry

105

Book For Application Developers, Release 11.0

G40rb (const G4String& pName,
G4double pRmax)

In the picture:
pRmax = 100

The Orb can be obtained from a Sphere with: pRmin =0, pSPhi =0, pDPhi =27, pSTheta =0, pDTheta=mn

PRmax

Outer radius

Torus:

To build a torus use:

G4Torus (const G4String& pName,
G4double pRmin,
G4double pRmax,
G4double pRtor,
G4double pSPhi,
G4double pDPhi)

In the picture:
PRmin = 40,
pSPhi = O,

60,

pRmax =
pDPhi =

pRtor =
90xdegree

200,

to obtain a solid with name pName and parameters:

pRmin | Inside radius

pRmax | Outside radius
pRtor | Swept radius of torus
pSPhi | Starting Phi angle in radians (£ESPhi+fDPhi<=2PI, fSPhi>-2P1I)

pDPhi

Delta angle of the segment in radians

In addition, the GEANT4 Design Documentation shows in the Solids Class Diagram the complete list of CSG classes.

Specific CSG Solids

Polycons:

Polycons (PCON) are implemented in GEANT4 through the G4Polycone class:

106

Chapter 4.

Detector Definition and Response

Book For Application Developers, Release 11.0

G4Polycone (const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int numZPlanes,
const G4double 2zPlanel],
const G4double rInner([],
const G4double rOuter([])

In the picture:
phiStart = 1/4%Pi, phiTotal = 3/2%Pi,

numZPlanes = 9, rInner = { 0, 0, O,
o, o0, 0, 0, 0, 0}, <rOuter = { 0, 10,
10, 5, 5, 10 , 10 , 2, 2}y, z = {5,
7, 9, 11, 25, 27, 29, 31, 35}
where:

phiStart Initial Phi starting angle

phiTotal Total Phi angle

numZPlanes | Number of Z planes

numRZ Number of corners in 1,Z space

zPlane Position of Z planes, with Z in increasing order

rInner Tangent distance to inner surface

rOuter Tangent distance to outer surface

r r coordinate of corners

z Z coordinate of corners

A Polycone where Z planes position can also decrease is implemented through the G4GenericPolycone class:

G4GenericPolycone (const G4Strings& pName,
G4double phiStart,
G4double phiTotal,
G4int numRZ,
const G4double «r[],
const G4double z[])

where:

4.1. Geometry 107

Book For Application Developers, Release 11.0

phiStart

Initial Phi starting angle

phiTotal

Total Phi angle

numRZ

Number of corners in r,Z space

r

r coordinate of corners

Z

7 coordinate of corners

Polyhedra (PGON):

Polyhedra (PGON) are implemented through G4Polyhedra:

G4Polyhedra (const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int numSide, -10.0
G4int numZPlanes,
const G4double zPlanel],
const G4double rInner[], 300
const G4double rOuter[])
G4Polyhedra (const G4Strings& pName, 20.0
G4double phiStart, =
G4double phiTotal, 10.0
G4int numSide,
G4int numRZ,
const G4double «r[], 0.0
const G4double z[])
In the picture:
phiStart = -1/4%Pi, phiTotal= 5/4%Pi,
numSide = 3, nunZPlanes 7, rInner =
{o0, 0, 0, O, O, 0, O 1}, rOuter = {
0, 15, 15, 4, 4, 10, 10 1}, z = { 0O,
5,8, 13, 30, 32, 35}
where:
phiStart Initial Phi starting angle
phiTotal Total Phi angle
numSide Number of sides
numZPlanes | Number of Z planes
numRZ Number of corners in 1,Z space
zPlane Position of Z planes
rInner Tangent distance to inner surface
rOuter Tangent distance to outer surface
r r coordinate of corners
z Z coordinate of corners

Tube with an elliptical cross section:

A tube with an elliptical cross section (ELTU) can be defined as follows:

108

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

G4EllipticalTube (const G4String& pName,

G4double Dx, _qjx
G4double Dy, 102295,
G4double Dz)

The equation of the surface in x/y is 1.0 = (x/ -5

dx) «x2 +(y/dy) **2 -8

EAEEENEL RS

R e R

VRS

In the picture
Dx = 5, Dy = 10, Dz

20

| Dx [Halflength X [Dy | Halflength Y | Dz [Half length Z

General Ellipsoid:

The general ellipsoid with possible cut in Z can be defined as follows:

G4Ellipsoid(const G4String& pName,
G4double pxSemiAxis,
G4double pySemiAxis,
G4double pzSemiAxis,
G4double pzBottomCut=0,
G4double pzTopCut=0)

In the picture:

pxSemiAxis = 10, pySemiAxis = 20,
pzSemiAxis 50, pzBottomCut = -10,
pzTopCut = 40

A general (or triaxial) ellipsoid is a quadratic surface which is given in Cartesian coordinates by:

1.0 = (x/pxSemiAxis)+*2 + (y/pySemiAxis)«+2 + (z/pzSemiAxis) 2

where:

4.1. Geometry 109

Book For Application Developers, Release 11.0

pxSemiAxis Semiaxis in X
pySemiAxis Semiaxis in Y
pzSemiAxis Semiaxis in Z
pzBottomCut | lower cut plane level, Z
pzTopCut upper cut plane level, Z

Cone with Elliptical Cross Section:

A cone with an elliptical cross section can be defined as follows:

G4EllipticalCone (const G4String& pName,
G4double xSemiAxis,
G4double ySemiAxis,
G4double zHeight, -50 for
. iEEsEeey
G4double zTopCut) 20) “%.gg;%%
—20 (SSES
2 G
WEEH
S
=20 0
= 20
In the picture:
xSemiAxis = 30/75, ySemiAxis = 60/75,
zHeight = 50, zTopCut = 25
where:
xSemiAxis | A scalar value, it defines the scaling along X-axis
ySemiAxis | A scalar value, it defines the scaling along Y-axis
zHeight Z-coordinate if the apex
zTopCut Upper cut plane level

Value of zTopCut cannot exceed zHeight; the bases of an elliptical cone are located at —zTopCut and

+zTopCut.

The lateral surface of an elliptical cone is described by the equation:

(x/xSemiAxis)**2 + (y/ySemiAxis)**2 = (zHeight - z)**2

Values of xSemiAxis and ySemiAxis can be figured out from the equations for the semimajor axes of the elliptical

section at z=0:

dx = xSemiAxis * zHeight dy = ySemiAxis * zHeight

Paraboloid, a solid with parabolic profile:

A solid with parabolic profile and possible cuts along the Z axis can be defined as follows:

110

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

G4Paraboloid (const G4String& pName,

G4double Dz,
G4double RI1,
G4double R2)

The equation for the solid is:

rhox*x2 <= k1l * z + k2;

—-dz <= z <= dz
rl«+«2 = kl = (-dz) + k2
r2+=+«2 = kl * (dz) + k2

In the picture:
R1 = 20, R2 =

35,

| Dz [HalflengthZ | R1 [Radius at-Dz | R2 | Radius at +Dz greater than R1

Tube with Hyperbolic Profile:

A tube with a hyperbolic profile (HYPE) can be defined as follows:

G4Hype (const G4Strings pName,
G4double innerRadius,
G4double outerRadius,
G4double innerStereo,
G4double outerStereo,
G4double halfLenZ)

In the picture:

innerStereo = 0.7, outerStereo
7, halflLenZ = 50, innerRadius
outerRadius = 30

0.
20,

G4Hype is shaped with curved sides parallel to the Z-axis, has a specified half-length along the Z axis about which it
is centred, and a given minimum and maximum radius.

A minimum radius of 0 defines a filled Hype (with hyperbolic inner surface), i.e. inner radius = 0 AND inner stereo

The inner and outer hyperbolic surfaces can have different stereo angles. A stereo angle of 0 gives a cylindrical

Inner radius

Outer radius

Inner stereo angle in radians

Outer stereo angle in radians

Half length in Z

angle = 0.

surface:
innerRadius
outerRadius
innerStereo
outerStereo
halfLenZ

Tetrahedra:

A tetrahedra solid can be defined as follows:

4.1. Geometry

111

Book For Application Developers, Release 11.0

G4Tet (const G4String& pName,
G4ThreeVector anchor,
G4ThreeVector p2,
G4ThreeVector p3,
G4ThreeVector p4,
G4bool~* degeneracyFlag=nullptr)

In the picture:

anchor =

—-sqrt (2),

}

{O/ OI
2+%sqrt (2/3),

sqrt (3) },
-1/sgrt(3) 1}, p3 = {
-sqrt (2/3),-1/sqrt (3) }, p4
{ sqgrt(2), —-sqgrt(2/3) , -1/sqgrt(3)

The solid is defined by 4 points in space:

anchor Anchor point

p2 Point 2

p3 Point 3

p4 Point 4

degeneracyFlag | Flagindicating degeneracy of points

Extruded Polygon:

The extrusion of an arbitrary polygon (extruded solid) with fixed outline in the defined Z sections can be defined as
follows (in a general way, or in a simplified construct with only two Z sections). G4Ext rudedSolid is constructed

by moving a 2D polygonal contour along a 3D polyline. During movement the polygonal contour can be scaled.

112

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

G4ExtrudedSolid (const G4String& pName,
std: :vector<G4TwoVector> polygon,
std: :vector<ZSection> zsections)

G4ExtrudedSolid (const G4String& pName,
std: :vector<G4TwoVector> polygon,
G4double halfz,

G4TwoVector offl, G4double scalel,
G4TwoVector off2, G4double scale2)

In the picture:

polygon = {-30,-30},{-30,30},{30,30},
{30,-301}, {15,-30},{15,15}, {-15,15},
{-15,-30}

zsections = [-60,{0,30},0.8], [-15,
{0,-30},1.1, [10,{0,0},0.6], [60,{0,
30},1.2]

The Z-sides of the solid are the scaled versions of the same polygon.

polygon 2D polygonal contour; the vertices of the outlined polygon defined in clock-wise order
zsections 3D polyline with scale factors; the Z-sections defined by Z position in increasing order
halfz Half length in Z; distance from the origin to the sections

offl, scalel | (X,Y) position of the polygon and scale factor at -halfZ
off2, scale2 | (X,Y) position of the polygon and scale factor at +halfZ

Each node in the 3D polyline is defined as a ZSection object:

struct ZSection
{

G4double f7Z; // Z coordinate of the node
G4TwoVector fOffset; // (X, Y) coordinates of the node
G4double fScale; // Scale factor that should be applied to the 2D polygon at the node

}

Very often an extruded solid is constructed by shifting a polygon in the perpendicular direction to its plane. In such
case of£1, of£2 should be specified as G4TwoVector(0,0) and scalel, scale?2 should be equal to 1.

Box Twisted:

A box twisted along one axis can be defined as follows:

4.1. Geometry 113

Book For Application Developers, Release 11.0

G4TwistedBox (const G4String& pName,
G4double twistedangle,
G4double pDx,
G4double pDy,
G4double pDz)

In the picture:

twistedangle = 30xDegree, pDx = 30,
pDy =40, pDz = 60
G4TwistedBox is a box twisted along the z-axis. The twist angle cannot be greater than 90 degrees:
twistedangle | Twist angle
pDx Half x length
pDy Half y length
pDz Half z length
Trapezoid Twisted along One Axis:
trapezoid twisted along one axis can be defined as follows:
G4TwistedTrap (const G4Strings& pName,
G4double twistedangle,
G4double pDxxl1,
G4double pDxx2,
G4double pDy,
G4double pDz)
G4TwistedTrap (const G4Strings& pName,
G4double twistedangle,
G4double pDz,
G4double pTheta,
G4double pPhi,
G4double pDyl, In the picture:
G4double prir pDx1l = 30, pDx2 = 40, pDyl = 40, pDx3
G4double pDx2, _ _ _ _
Gddouble pDy2, = 10, pDbx4 = 14, pDhy2 = ?6, pbz = 60,
G4double pDx3, pTheta = 20xDegree, pDphi = 5xDegree,
G4double pDx4, pAlph = 10%Degree, twistedangle =
G4double pAlph) 30*Degree

The first constructor of G4TwistedTrap produces a regular trapezoid twisted along the Z-axis, where the caps of
the trapezoid are of the same shape and size.

The second constructor produces a generic trapezoid with polar, azimuthal and tilt angles.

The twist angle cannot be greater than 90 degrees:

114 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

twistedangle | Twisted angle

pDx1 Half X length at y=-pDy

pDx2 Half X length at y=+pDy

pDy Half Y length

pDz Half Z length

pTheta Polar angle of the line joining the centres of the faces at -/+pDz
pDyl Half Y length at -pDz

pDx1 Half X length at -pDz, y=-pDy1

pDx2 Half X length at -pDz, y=+pDy1

pDy?2 Half Y length at +pDz

pDx3 Half X length at +pDz, y=-pDy2

pDx4 Half X length at +pDz, y=+pDy2

pAlph Angle with respect to the Y axis from the centre of the side

Twisted Trapezoid with X and Y dimensions varying along Z:

A twisted trapezoid with the X and Y dimensions varying along Z can be defined as follows:

G4TwistedTrd (const G4Strings& pName,

G4double pDx1,

G4double pDx2,

G4double pDyl,

G4double pDy2,

G4double pDz,

G4double twistedangle)
In the picture:
dxl = 30, dx2 = 10, dyl = 40, dy2 =
15, dz = 60, twistedangle = 30xDegree

where:

pDx1 Half X length at the surface positioned at -dz

pDx2 Half X length at the surface positioned at +dz

pDyl Half Y length at the surface positioned at -dz

pDy2 Half Y length at the surface positioned at +dz

pDz Half Z length

twistedangle | Twisted angle

Generic trapezoid with optionally collapsing vertices:

An arbitrary trapezoid with up to 8 vertices standing on two parallel planes perpendicular to the Z axis can be defined

as follows:

G4GenericTrap (const G4String& pName,

G4double

pDz,

const std::vector<G4TwoVector>& vertices)

4.1. Geometry

115

Book For Application Developers, Release 11.0

In the picture:
pDz = 25 vertices = {-30, -30}, {-30, 30}, {30, 30}, {30, -30} {-5, -20%,
{-20, 20}, {20, 20}, {20, -20}

In the picture:
pbz = 25 vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30} {-20,-20}, {-20,
20}, {20,20}, {20, 20}

In the picture:
pDz = 25 vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30} {0,0}, {0O,0}, {O,
0}, {0,0}

where:

pDz Half Z length
vertices | The (X,Y) coordinates of vertices

The order of specification of the coordinates for the vertices in G4GenericTrap is important. The first four points
are the vertices sitting on the —hz plane; the last four points are the vertices sitting on the +hz plane.

The order of defining the vertices of the solid is the following:

point 0 is connected with points 1,3,4
point 1 is connected with points 0,2,5
point 2 is connected with points 1,3,6
point 3 is connected with points 0,2, 7
point 4 is connected with points 0,5,7
point 5 is connected with points 1,4,6
point 6 is connected with points 2,5,7
point 7 is connected with points 3,4, 6

116 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Points can be identical in order to create shapes with less than 8§ vertices; the only limitation is to have at least one
triangle at +hz or —hz; the lateral surfaces are not necessarily planar. Not planar lateral surfaces are represented by a
surface that linearly changes from the edge on —hz to the corresponding edge on +hz; it represents a sweeping surface
with twist angle linearly dependent on Z, but it is not a real twisted surface mathematically described by equations as

for the other twisted solids described in this chapter.
Tube Section Twisted along Its Axis:

A tube section twisted along its axis can be defined as follows:

G4TwistedTubs (const G4Stringé& pName,
G4double twistedangle,
G4double endinnerrad,
G4double endouterrad,
G4double halfzlen,
G4double dphi)

In the picture:

endinnerrad = 10, endouterrad =
halfzlen = 20, dphi = 90xDegree,
twistedangle = 60xDegree

15,

GATwistedTubs is a sort of twisted cylinder which, placed along the Z-axis and divided into phi-segments is
shaped like an hyperboloid, where each of its segmented pieces can be tilted with a stereo angle.

It can have inner and outer surfaces with the same stereo angle:

twistedangle

Twisted angle

endinnerrad

Inner radius at endcap

endouterrad

Outer radius at endcap

halfzlen

Half Z length

dphi

Phi angle of a segment

Additional constructors are provided, allowing the shape to be specified either as:

¢ the number of segments in phi and the total angle for all segments, or
* a combination of the above constructors providing instead the inner and outer radii at z=0 with different z-

lengths along negative and positive Z-axis.

4.1. Geometry

117

Book For Application Developers, Release 11.0

Solids made by Boolean operations

Simple solids can be combined using Boolean operations. For example, a cylinder and a half-sphere can be combined
with the union Boolean operation.

Creating such a new Boolean solid, requires:

e Two solids
* A Boolean operation: union, intersection or subtraction.
* Optionally a transformation for the second solid.

The solids used should be either CSG solids (for examples a box, a spherical shell, or a tube) or another Boolean solid:
the product of a previous Boolean operation. An important purpose of Boolean solids is to allow the description of
solids with peculiar shapes in a simple and intuitive way, still allowing an efficient geometrical navigation inside them.

Note: The constituent solids of a Boolean operation should possibly avoid be composed by sharing all or part of their
surfaces. This precaution is necessary in order to avoid the generation of ‘fake’ surfaces due to precision loss, or errors
in the final visualization of the Boolean shape. In particular, if any one of the subtractor surfaces is coincident with a
surface of the subtractee, the result is undefined. Moreover, the final Boolean solid should represent a single ‘closed’
solid, i.e. a Boolean operation between two solids which are disjoint or far apart each other, is not a valid Boolean
composition.

Note: The tracking cost for navigating in a Boolean solid is proportional to the number of constituent solids. So
care must be taken to avoid extensive, unnecessary use of Boolean solids in performance-critical areas of a geometry
description, where each solid is created from Boolean combinations of many other solids.

Examples of the creation of the simplest Boolean solids are given below:

G4Box* box =
new G4Box ("Box",20+mm, 30+mm, 40+mm) ;
G4Tubs* cyl =

new G4Tubs ("Cylinder",0,50+mm, 50+mm, 0, twopi); // r: 0 mm —> 50 mm
/) z: -50 mm -> 50 mm
// phi: 0 -> 2 pi

G4UnionSolid* union =

new G4UnionSolid("Box+Cylinder", box, cyl);
G4IntersectionSolidx intersection =

new G4IntersectionSolid("BoxxCylinder", box, cyl);
G4SubtractionSolidx subtraction =

new G4SubtractionSolid("Box-Cylinder", box, cyl);

where the union, intersection and subtraction of a box and cylinder are constructed.

The more useful case where one of the solids is displaced from the origin of coordinates also exists. In this case the
second solid is positioned relative to the coordinate system (and thus relative to the first). This can be done in two
ways:

* FEither by giving a rotation matrix and translation vector that are used to transform the coordinate system of the
second solid to the coordinate system of the first solid. This is called the passive method.

e Or by creating a transformation that moves the second solid from its desired position to its standard position,
e.g., a box’s standard position is with its centre at the origin and sides parallel to the three axes. This is called
the active method.

In the first case, the translation is applied first to move the origin of coordinates. Then the rotation is used to rotate the
coordinate system of the second solid to the coordinate system of the first.

118 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

G4RotationMatrix* yRot = new G4RotationMatrix; // Rotates X and Z axes only
yRot->rotateY (M_PI/4.+rad); // Rotates 45 degrees
G4ThreeVector zTrans (0, 0, 50);

G4UnionSolid* unionMoved =
new G4UnionSolid("Box+CylinderMoved", box, cyl, yRot, zTrans);

// The new coordinate system of the cylinder is translated so that
// its centre is at +50 on the original Z axis, and it is rotated
// with its X axis halfway between the original X and Z axes.

// Now we build the same solid using the alternative method
//
G4RotationMatrix invRot = yRot->invert ();
G4Transform3D transform(invRot, zTrans);
G4UnionSolid* unionMoved =
new G4UnionSolid("Box+CylinderMoved", box, cyl, transform);

Note that the first constructor that takes a pointer to the rotation-matrix (G4RotationMatrix«), does NOT copy
it. Therefore once used a rotation-matrix to construct a Boolean solid, it must NOT be modified.

In contrast, with the alternative method shown, a G4Transform3D is provided to the constructor by value, and its
transformation is stored by the Boolean solid. The user may modify the G4Transform3D and eventually use it
again.

When positioning a volume associated to a Boolean solid, the relative center of coordinates considered for the posi-
tioning is the one related to the first of the two constituent solids.

Multi-Union Structures

Since release 10.4, the possibility to define multi-union structures is part of the standard set of constructs in GEANT4.
A G4Mult iUnion structure allows for the description of a Boolean union of many displaced solids at once, therefore
representing volumes with the same associated material. An example on how to define a simple MultiUnion structure
is given here:

#include "G4MultiUnion.hh"

// Define two —-G4Box— shapes

//
G4Box* boxl = new G4Box ("Boxl1", 5.xmm, 5.*mm, 10.*mm);
G4Box* box2 = new G4Box ("Box2", 5.xmm, 5.*mm, 10.*mm);

// Define displacements for the shapes

//

G4RotationMatrix rotm = G4RotationMatrix();
G4ThreeVector positionl = G4ThreeVector (0.,0.,1.);
G4ThreeVector position2 = G4ThreeVector(0.,0.,2.);
G4Transform3D trl = G4Transform3D (rotm,positionl);
G4Transform3D tr2 = G4Transform3D (rotm,position2);

// Initialise a MultiUnion structure
//
G4MultiUnion* munion_solid = new G4MultiUnion ("Boxes_Union");

// Add the shapes to the structure
//

munion_solid->AddNode (*boxl,trl) ;
munion_solid->AddNode (*box2,tr2) ;

// Finally close the structure
//
munion_solid->Voxelize () ;

(continues on next page)

4.1. Geometry 119

Book For Application Developers, Release 11.0

(continued from previous page)

// Associate it to a logical volume as a normal solid

//

G4LogicalVolume* 1lvol =

new G4LogicalVolume (munion_solid, // its solid
munion_mat, // its material
"Boxes_Union_LV"); // its name

Fast detection of intersections in tracking is assured by the adoption of a specialised optimisation applied to the 3D
structure itself and generated at initialisation.

Tessellated Solids

In GEANT4 it is also implemented a class G4TessellatedSolid which can be used to generate a generic solid
defined by a number of facets (G4VFacet). Such constructs are especially important for conversion of complex
geometrical shapes imported from CAD systems bounded with generic surfaces into an approximate description with
facets of defined dimension (see Fig. 4.1).

Fig. 4.1: Example of geometries imported from CAD system and converted to tessellated solids.

They can also be used to generate a solid bounded with a generic surface made of planar facets. It is important that
the supplied facets shall form a fully enclosed space to represent the solid, and that adjacent facets always share a
complete edge (no vertex on one facet can lie between vertices on an adjacent facet).

Two types of facet can be used for the construction of a G4TessellatedSolid: a triangular facet
(G4TriangularFacet) and a quadrangular facet (G4QuadrangularFacet).

An example on how to generate a simple tessellated shape is given below.

Listing 4.1: Example of geometries imported from CAD system and con-
verted to tessellated solids.
// First declare a tessellated solid

//
G4TessellatedSolid solidTarget = new G4TessellatedSolid("Solid name");

// Define the facets which form the solid
//
G4double targetSize = 10xcm ;

(continues on next page)

120 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

(continued from previous page)

G4TriangularFacet xfacetl = new

G4TriangularFacet (G4ThreeVector (-targetSize, -targetSize, 0.0),
G4ThreeVector (+targetSize, -targetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet +facet2 = new

G4TriangularFacet (G4ThreeVector (+targetSize, -targetSize, 0.0),
G4ThreeVector (+targetSize, ttargetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet xfacet3 = new

G4TriangularFacet (G4ThreeVector (+targetSize, ttargetSize, 0.0),
G4ThreeVector (-targetSize, ttargetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet xfacet4 = new

G4TriangularFacet (G4ThreeVector (-targetSize, +targetSize, 0.0),
G4ThreeVector (-targetSize, ~targetSize, 0.0),
G4ThreeVector (0.0, 0.0, +targetSize),
ABSOLUTE) ;

G4QuadrangularFacet xfacetb = new

G4QuadrangularFacet (G4ThreeVector (-targetSize, targetSize,
G4ThreeVector (-targetSize, +targetSize,
G4ThreeVector (+targetSize, ttargetSize,
G4ThreeVector (+targetSize, ~targetSize,

o O O o
o O O o
~

ABSOLUTE) ;

// Now add the facets to the solid

/7

solidTarget->AddFacet ((G4VFacet*) facetl)
solidTarget->AddFacet ((G4VFacet~) facet?2)
solidTarget->AddFacet ((G4VFacet*) facet3);
solidTarget->AddFacet ((G4VFacet*) facetd)
solidTarget->AddFacet ((G4VFacet*) facet))

’

’

’

’

Finally declare the solid is complete

/7

solidTarget->SetSolidClosed (true) ;

The G4TriangularFacet class is used for the construction of G4TessellatedSolid. It is defined by three
vertices, which shall be supplied in anti-clockwise order looking from the outside of the solid where it belongs. Its

constructor looks like:

G4TriangularFacet (const G4ThreeVector PtO,
const G4ThreeVector vtl,
const G4ThreeVector vt2,

G4FacetVertexType fType)

i.e., it takes 4 parameters to define the three vertices:

G4FacetVertexType | ABSOLUTE in which case Pt 0, vt 1 and vt2 are the three vertices in anti-clockwise
order looking from the outside.
G4FacetVertexType | RELATIVE in which case the first vertex is Pt 0, the second vertex is Pt0+vt1l

and the third vertex is Pt 0+vt 2, all in anti-clockwise order when looking from the
outside.

The G4QuadrangularFacet class can be used for the construction of G4TessellatedSolid as well. It is
defined by four vertices, which shall be in the same plane and be supplied in anti-clockwise order looking from the
outside of the solid where it belongs. Its constructor looks like:

4.1. Geometry

121

Book For Application Developers, Release 11.0

G4QuadrangularFacet (const G4ThreeVector PtO,
const G4ThreeVector vtl,
const G4ThreeVector vt2,
const G4ThreeVector vt3,

G4FacetVertexType fType)

i.e., it takes 5 parameters to define the four vertices:

G4FacetVertexType | ABSOLUTE in which case Pt 0, vt1, vt2 and vt 3 are the four vertices required in
anti-clockwise order when looking from the outside.

G4FacetVertexType | RELATIVE in which case the first vertex is Pt 0, the second vertex is Pt 0+vt, the
third vertex is Pt 0+vt2 and the fourth vertex is Pt 0+vt 3, in anti-clockwise order
when looking from the outside.

Importing CAD models as tessellated shapes

Tessellated solids can also be used to import geometrical models from CAD systems (see fig-geom-solid-1). In order
to do this, it is required to convert first the CAD shapes into tessellated surfaces. A way to do this is to save the shapes
in the geometrical model as STEP files and convert them to tessellated (faceted surfaces) solids, using a tool which
allows such conversion. This strategy allows to import any shape with some degree of approximation; the converted
CAD models can then be imported through GDML (Geometry Description Markup Language) into GEANT4 and be
represented as G4TessellatedSolid shapes.

Tools which can be used to generate meshes to be then imported in GEANT4 as tessellated solids are:

e FASTRAD - 3D tool for radiation shielding analysis; exports meshes to GDML.

* InStep - A free STL to GDML conversion tool.

* SALOME - Open-source software allowing to import STEP/BREP/IGES/STEP/ACIS formats, mesh them and
export to STL.

* ESABASE?2 - Space environment analysis CAD, basic modules free for academic non-commercial use. Can
import STEP files and export to GDML shapes or complete geometries.

* CADMesh - Tool based on the VCG Library to read STL files and import in GEANT4.

* Cogenda - Commercial TCAD software for generation of 3D meshes through the module Gds2Mesh and final
export to GDML.

* EDGE - A commercial GDML editor, able to import/export STEP/STL geometries.

e CadMC - Tool to convert FreeCAD geometries to Geant4 (tessellated and CSG shapes).

Unified Solids

An alternative implementation for most of the cited geometrical primitives is provided since release 10.0 of GEANT4.
With release 10.6, all primitives shapes except the twisted specific solids, can be replaced.

The code for the new geometrical primitives originated as part of the AIDA Unified Solids Library and is now in-
tegrated in the VecGeom library (the vectorized geometry library for particle-detector simulation); it is provided as
alternative use and can be activated in place of the original primitives defined in GEANT4, by selecting the appropri-
ate compilation flag when configuring the GEANT4 libraries installation. The installation allows to build against an
external system installation of the VecGeom library, therefore the appropriate installation path must also be provided
during the installation configuration:

~DGEANT4_USE_USOLIDS="all" // to replace all available shapes
-DGEANT4_USE_USOLIDS="box; tubs" // to replace only individual shapes

The original API for all geometrical primitives is preserved.

122 Chapter 4. Detector Definition and Response

http://cern.ch/gdml/
http://www.fastrad.net/
http://www.solveering.com/instep.htm
http://www.salome-platform.org/
http://esabase2.net/
https://github.com/christopherpoole/CADMesh
https://sourceforge.net/projects/vcg
http://www.cogenda.com/
https://www.space-suite.com/edge/
http://polar.psi.ch/cadmc/
https://cern.ch/aidasoft/USolids
https://gitlab.cern.ch/VecGeom/VecGeom

Book For Application Developers, Release 11.0

4.1.3 Logical Volumes

The Logical Volume manages the information associated with detector elements represented by a given Solid and
Material, independently from its physical position in the detector.

G4LogicalVolumes must be allocated using ‘new’ in the user’s program; they get registered to a
G4LogicalVolumeStore at construction, which will also take care to deallocate them at the end of the job, if
not done already in the user’s code.

A Logical Volume knows which physical volumes are contained within it. It is uniquely defined to be their mother
volume. A Logical Volume thus represents a hierarchy of unpositioned volumes whose positions relative to one another
are well defined. By creating Physical Volumes, which are placed instances of a Logical Volume, this hierarchy or tree
can be repeated.

A Logical Volume also manages the information relative to the Visualization attributes (Visualization Attributes) and
user-defined parameters related to tracking, electro-magnetic field or cuts (through the G4UserLimits interface).

By default, tracking optimization of the geometry (voxelization) is applied to the volume hierarchy identified by a
logical volume. It is possible to change the default behavior by choosing not to apply geometry optimization for a
given logical volume. This feature does not apply to the case where the associated physical volume is a parameterised
volume; in this case, optimization is always applied.

G4LogicalVolume (G4VSolidx pSolid,
G4Material * pMaterial,
const G4Stringé& Name,
G4FieldManagerx* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits~ pULimits=0,
G4bool Optimise=true)

Note: GEANT4 does not impose any restriction on the name assigned to logical volumes; names can be shared. It is
however good practice to specify unique names for each logical volume, to allow for easier retrivial from stores for
post-processing use.

Through the logical volume it is also possible to fune the granularity of the optimisation algorithm to be applied to the
sub-tree of volumes represented. This is possible using the methods:

G4double GetSmartless () const
void SetSmartless (G4double s)

The default smartless value is 2 and controls the average number of slices per contained volume which are used in the
optimisation. The smaller the value, the less fine grained optimisation grid is generated; this will translate in a possible
reduction of memory consumed for the optimisation of that portion of geometry at the price of a slight CPU time
increase at tracking time. Manual tuning of the optimisation is in general not required, since the optimal granularity
level is computed automatically and adapted to the specific geometry setup; however, in some cases (like geometry
portions with ‘dense’ concentration of volumes distributed in a non-uniform way), it may be necessary to adopt manual
tuning for helping the optimisation process in dealing with the most critical areas. By setting the verbosity to 2 through
the following UI run-time command:

/run/verbose 2
a statistics of the memory consumed for the allocated optimisation nodes will be displayed volume by volume, allowing
to easily identify the critical areas which may eventually require manual intervention.

The logical volume provides a way to estimate the mass of a tree of volumes defining a detector or sub-detector. This
can be achieved by calling the method:

4.1. Geometry 123

Book For Application Developers, Release 11.0

G4double GetMass (G4bool forced=false)

The mass of the logical volume tree is computed from the estimated geometrical volume of each solid and material
associated with the logical volume and its daughters. Note that this computation may require a considerable amount
of time, depending on the complexity of the geometry tree. The returned value is cached by default and can be used
for successive calls, unless recomputation is forced by providing t rue for the Boolean argument forced in input.
Computation should be forced if the geometry setup has changed after the previous call.

Finally, the Logical Volume manages the information relative to the Envelopes hierarchy required for fast Monte Carlo
parameterisations (Parameterisation).

Sub-detector Regions

In complex geometry setups, such as those found in large detectors in particle physics experiments, it is useful to think
of specific Logical Volumes as representing parts (sub-detectors) of the entire detector setup which perform specific
functions. In such setups, the processing speed of a real simulation can be increased by assigning specific production
cuts to each of these detector parts. This allows a more detailed simulation to occur only in those regions where it is
required.

The concept of detector Region is introduced to address this need. Once the final geometry setup of the detector has
been defined, a region can be specified by constructing it with:

G4Region (const G4Stringé& rName)

where:

rName \ String identifier for the detector region \

G4Regions must be allocated using ‘new’ in the user’s program; they get registered to a G4RegionStore at
construction, which will also take care to deallocate them at the end of the job, if not done already in the user’s code.

A G4Region must then be assigned to a logical volume, in order to make it a Root Logical Volume:

G4Region* emCalorimeter = new G4Region ("EM-Calorimeter");
emCalorimeterLV->SetRegion (emCalorimeter) ;
emCalorimeter->AddRootLogicalVolume (emCalorimeterLV) ;

A root logical volume is the first volume at the top of the hierarchy to which a given region is assigned. Once the
region is assigned to the root logical volume, the information is automatically propagated to the volume tree, so that
each daughter volume shares the same region. Propagation on a tree branch will be interrupted if an already existing
root logical volume is encountered.

Note: It is recommended to assign unique names to logical volumes specified as root logical volumes, as this will
guarantee proper retrievial from the store for post-processing use in persistency. The same applies for names assigned
to regions.

A specific Production Cut can be assigned to the region, by defining and assigning to it a G4ProductionCut object

emCalorimeter->SetProductionCuts (emCalCuts) ;

Set production threshold (SetCut methods) describes how to define a production cut. The same region can be assigned
to more than one root logical volume, and root logical volumes can be removed from an existing region. A logical
volume can have only one region assigned to it. Regions will be automatically registered in a store which will take
care of destroying them at the end of the job. A default region with a default production cut is automatically created
and assigned to the world volume.

124 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Regions can also become ‘envelopes’ for fast-simulation; can be assigned user-limits or generic user-information
(G4vUserRegionInformation); can be associated to specific stepping-actions (G4UserSteppingAction)
or have assigned a local magnetic-field (local fields specifically associated to logical volumes take precedence any-
how).

4.1.4 Physical Volumes

Physical volumes represent the spatial positioning of the volumes describing the detector elements. Several techniques
can be used. They range from the simple placement of a single copy to the repeated positioning using either a simple
linear formula or a user specified function.

Any physical volume must be allocated using ‘new’ in the user’s program; they get registered to a
GAPhysicalVolumeStore at construction, which will also take care to deallocate them at the end of the job,
if not done already in the user’s code.

The simple placement involves the definition of a transformation matrix for the volume to be positioned. Repeated
positioning is defined using the number of times a volume should be replicated at a given distance along a given
direction. Finally it is possible to define a parameterised formula to specify the position of multiple copies of a
volume. Details about these methods are given below.

Note: For geometries which vary between runs and for which components of the old geometry setup are explicitly
-deleted-, it is required to consider the proper order of deletion (which is the exact inverse of the actual construction,
i.e., first delete physical volumes and then logical volumes). Deleting a logical volume does NOT delete its daughter
volumes.

It is not necessary to delete the geometry setup at the end of a job, the system will take care to free the volume and
solid stores at the end of the job. The user has to take care of the deletion of any additional transformation or rotation
matrices allocated dynamically in his/her own application.

Note: GEANT4 does not impose any restriction on the name assigned to volumes; names can be shared. It is however
good practice to specify unique names for each physical node in a tree, to allow for easier retrivial from stores for
post-processing use.

Placements: single positioned copy

In this case, the Physical Volume is created by associating a Logical Volume with a Transformation that defines the
position of the current volume in the mother volume. The solid itself is moved by rotating and translating it to bring
it into the system of coordinates of the mother volume. The decomposition of the Transformation must contain only
rotation and translation (reflection and scaling are not allowed).

To create a Placement one must construct it using:

G4PVPlacement (G4Transform3D solidTransform,
G4LogicalVolume* pCurrentlogical,
G4Stringé pName,
G4LogicalVolumex* pMotherLogical,
G4bool pMany,
G4int pCopyNo,
G4bool pSurfChk=false)
where:

4.1. Geometry

125

Book For Application Developers, Release 11.0

solidTransform Position in its mother volume

pCurrentLogical | The associated Logical Volume

pName String identifier for this placement

pMotherLogical The associated mother volume

pMany For future use. Can be set to false

pCopyNo Integer which identifies this placement

pSurfChk if true activates check for overlaps with existing volumes

Currently Boolean operations are not implemented at the level of physical volume. So pMany must be false. However,
an alternative implementation of Boolean operations exists. In this approach a solid can be created from the union,
intersection or subtraction of two solids. See Solids made by Boolean operations above for an explanation of this.

The mother volume must be specified for all volumes except the world volume.

An alternative way to specify a Placement is to use a Rotation Matrix and a Translation Vector. If compared with the
previous construct, the Rotation Matrix is the inverse of the rotation from the decomposition of the transformation,
but the Translation Vector is the same. The Rotation Matrix represents the rotation of the reference frame of the
considered volume relatively to its mother volume’s reference frame. The Translation Vector represents the translation
of the current volume in the reference frame of its mother volume. This passive method can be utilized using the
following constructor:

G4PVPlacement (G4RotationMatrix* pRot,
const G4ThreeVectors tlate,
G4LogicalVolumex* pCurrentlogical,
const G4Stringé& pName,
G4LogicalVolumex* pMotherLogical,
G4bool pMany,
G4int pCopyNo,
G4bool pSurfChk=false)
where:
PRot Rotation with respect to its mother volume
tlate Translation with respect to its mother volume
pCurrentLogical | The associated Logical Volume
pName String identifier for this placement
pMotherLogical The associated mother volume
pMany For future use. Can be set to false
pCopyNo Integer which identifies this placement
pSurfChk if true activates check for overlaps with existing volumes

Care must be taken because the rotation matrix is not copied by a G4PVPlacement. So the user must not modify it
after creating a Placement that uses it. However the same rotation matrix can be re-used for many volumes.

An alternative method to specify the mother volume is to specify its placed physical volume. It can be used in either
of the above methods of specifying the placement’s position and rotation. The effect will be exactly the same as for
using the mother logical volume.

Note that a Placement Volume can still represent multiple detector elements. This can happen if several copies exist
of the mother logical volume. Then different detector elements will belong to different branches of the tree of the
hierarchy of geometrical volumes.

An example demonstrating various ways of placement and constructing the rotation matrix is provided in examples/
extended/geometry/transforms.

126 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Repeated volumes

In this case, a single Physical Volume represents multiple copies of a volume within its mother volume, allowing to
save memory. This is normally done when the volumes to be positioned follow a well defined rotational or translational
symmetry along a Cartesian or cylindrical coordinate. The Repeated Volumes technique is available for most volumes
described by CSG solids.

Replicas

Replicas are repeated volumes in the case when the multiple copies of the volume are all identical. The coordinate
axis and the number of replicas need to be specified for the program to compute at run time the transformation matrix
corresponding to each copy.

G4PVReplica (const G4Strings& pName,

G4LogicalVolume~ pCurrentlogical,
G4LogicalVolume* pMotherLogical, // OR G4VPhysicalVolume *

const EAxis PAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0)
where:
pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother volume
pPAxis The axis along with the replication is applied
nReplicas The number of replicated volumes
width The width of a single replica along the axis of replication
offset Possible offset associated to mother offset along the axis of replication

G4PVReplica represents nReplicas volumes differing only in their positioning, and completely filling the con-
taining mother volume. Consequently if a G4PVReplica is ‘positioned’ inside a given mother it MUST be the
mother’s only daughter volume. Replica’s correspond to divisions or slices that completely fill the mother volume and
have no offsets. For Cartesian axes, slices are considered perpendicular to the axis of replication.

The replica’s positions are calculated by means of a linear formula. Replication may occur along:

e Cartesian axes (kXAxis,kYAxis,kZAxis)
The replications, of specified width have coordinates of form (-width* (nReplicas-1)x*0.
5+n*width, 0, 0) where n=0.. nReplicas-1 for the case of kXAx1is, and are unrotated.
* Radial axis (cylindrical polar) (kRho)
The replications are cons/tubs sections, centred on the origin and are unrotated.
They have radii of width+n+offset towidth« (n+l)+offset where n=0..nReplicas-1
* Phi axis (cylindrical polar) (kPhi)
The replications are phi sections or wedges, and of cons/tubs form.
They have phi of offset+n+widthto offset+ (n+l)«width where n=0..nReplicas-1

The coordinate system of the replicas is at the centre of each replica for the Cartesian axis. For the radial case, the
coordinate system is unchanged from the mother. For the phi axis, the new coordinate system is rotated such that the
X axis bisects the angle made by each wedge, and Z remains parallel to the mother’s Z axis.

The solid associated via the replicas’ logical volume should have the dimensions of the first volume created and must
be of the correct symmetry/type, in order to assist in good visualisation.

ex. For X axis replicas in a box, the solid should be another box with the dimensions of the replications. (same Y & Z
dimensions as mother box, X dimension = mother’s X dimension/nReplicas).

4.1. Geometry 127

Book For Application Developers, Release 11.0

Replicas may be placed inside other replicas, provided the above rule is observed. Normal placement volumes may be
placed inside replicas, provided that they do not intersect the mother’s or any previous replica’s boundaries. Parame-
terised volumes may not be placed inside.

Because of these rules, it is not possible to place any other volume inside a replication in radius.
The world volume cannot act as a replica, therefore it cannot be sliced.

During tracking, the translation + rotation associated with each G4PVReplica object is modified according to the
currently ‘active’ replication. The solid is not modified and consequently has the wrong parameters for the cases of
phi and r replication and for when the cross-section of the mother is not constant along the replication.

Example

Listing 4.2: An example of simple replicated volumes with
G4PVReplica.

G4PVReplica repX("Linear Array",
pReplogical,
pContainingMotherBox,
kXAxis, 5, 10*mm);

G4PVReplica repR("RSlices",
pRepRLogical,
pContainingMotherTub,
kRho, 5, 10*mm, O0);

G4PVReplica repZ ("zZSlices",
pRepzZLlogical,
pContainingMotherTub,
kzZAxis, 5, 10xmm);

G4PVReplica repPhi ("PhiSlices",
pRepPhilogical,
pContainingMotherTub,
kPhi, 4, M _PIx0.5xrad, 0);

RepX is an array of 5 replicas of width 10¥*mm, positioned inside and completely filling the volume pointed by
pContainingMotherBox. The mother’s X length must be 5*10*mm=50*mm (for example, if the mother’s solid
were a Box of half lengths [25,25,25] then the replica’s solid must be a box of half lengths [25,25,5]).

If the containing mother’s solid is a tube of radius 50*mm and half Z length of 25*mm, RepR divides the mother tube
into 5 cylinders (hence the solid associated with pRepRLogical must be a tube of radius 10*mm, and half Z length
25*mm); rep?Z divides the tube into 5 shorter cylinders (the solid associated with pRepZLogical must be a tube of
radius 10¥*mm, and half Z length 5*mm); finally, repPh1i divides the tube into 4 tube segments with full angle of 90
degrees (the solid associated with pRepPhilLogical must be a tube segment of radius 10*mm, half Z length 5*mm
and delta phi of M_PI*0.5*rad).

No further volumes may be placed inside these replicas. To do so would result in intersecting boundaries due to the r
replications.

128 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Parameterised Volumes

Parameterised Volumes are repeated volumes in the case in which the multiple copies of a volume can be different in
size, solid type, or material. The solid’s type, its dimensions, the material and the transformation matrix can all be
parameterised in function of the copy number, both when a strong symmetry exist and when it does not. The user
implements the desired parameterisation function and the program computes and updates automatically at run time the
information associated to the Physical Volume.

An example of creating a parameterised volume (by dimension and position) exists in basic exam-
ple B2b. The implementation is provided in the two classes B2b::DetectorConstruction and
B2b: :ChamberParameterisation.

To create a parameterised volume, one must first create its logical volume like t rackerChamberLV below. Then
one must create his own parameterisation class (B2b::ChamberParameterisation) and instantiate an object of this class
(chamberParam). We will see how to create the parameterisation below.

Listing 4.3: An example of Parameterised volumes.

// Tracker segments

// An example of Parameterised volumes
// Dummy values for G4Tubs -—- modified by parameterised volume

G4Tubs* chambersS

= new G4Tubs ("tracker",0, 100xcm, 100xcm, 0.=xdeg, 360.=xdeg);
fLogicChamber

= new G4LogicalVolume (chamberS, fChamberMaterial, "Chamber",0,0,0);

G4double firstPosition = —trackerSize + chamberSpacing;
G4double firstLength = trackerLength/10;
G4double lastLength = trackerLength;

G4VPVParameterisation* chamberParam =
new ChamberParameterisation (NbOfChambers, // NoChambers
firstPosition, // Z of center of first
chamberSpacing, // Z spacing of centers
chamberWidth, // chamber width

firstLength, // initial length
lastLength) ; // final length
// dummy value : kZAxis —-—- modified by parameterised volume
new G4PVParameterised("Chamber", // their name
fLogicChamber, // their logical volume
trackerLV, // Mother logical volume
kZAxis, // Are placed along this axis
NbOfChambers, // Number of chambers
chamberParam, // The parametrisation
fCheckOverlaps); // checking overlaps
The general constructor is:
G4PVParameterised(const G4Strings pName,
G4LogicalVolume~ pCurrentlLogical,
G4LogicalVolume~* pMotherlLogical, // OR G4VPhysicalVolume *
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam,
G4bool pSurfChk=false)

Note that for a parameterised volume the user must always specify a mother volume. So the world volume can never
be a parameterised volume, nor it can be sliced. The mother volume can be specified either as a physical or a logical
volume.

4.1. Geometry 129

Book For Application Developers, Release 11.0

pAxis specifies the tracking optimisation algorithm to apply: if a valid axis (the axis along which the parameterisation
is performed) is specified, a simple one-dimensional voxelisation algorithm is applied; if “kUndefined” is specified
instead, the default three-dimensional voxelisation algorithm applied for normal placements will be activated. In the
latter case, more voxels will be generated, therefore a greater amount of memory will be consumed by the optimisation
algorithm.

pSurfChk if true activates a check for overlaps with existing volumes or paramaterised instances.

The parameterisation mechanism associated to a parameterised volume is defined in the parameterisation class and its
methods. Every parameterisation must create two methods:

e ComputeTransformation defines where one of the copies is placed,
* ComputeDimensions defines the size of one copy, and
* a constructor that initializes any member variables that are required.

An example is B2b: : ChamberParameterisation that parameterises a series of tubes of different sizes

Listing 4.4: An example of Parameterised tubes of different sizes.

namespace B2b

{

class ChamberParameterisation : public G4VPVParameterisation

{

void ComputeTransformation (const G4int copyNo,
G4VPhysicalVolume xphysVol) const;

void ComputeDimensions (G4Tubsé& trackerlayer,
const G4int copyNo,
const G4VPhysicalVolume xphysVol) const;

These methods works as follows:

The ComputeTransformation method is called with a copy number for the instance of the parameterisation
under consideration. It must compute the transformation for this copy, and set the physical volume to utilize this
transformation:

void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume xphysVol) const
{

7

// Note: copyNo will start with zero!

G4double Zposition = fStartZ + copyNo » fSpacing;
G4ThreeVector origin(0,0,Zposition) ;
physVol->SetTranslation (origin);
physVol->SetRotation (0);

Note that the translation and rotation given in this scheme are those for the frame of coordinates (the passive method).
They are not for the active method, in which the solid is rotated into the mother frame of coordinates.

Similarly the ComputeDimensions method is used to set the size of that copy.

void ChamberParameterisation::ComputeDimensions
(G4Tubs& trackerChamber, const G4int copyNo, const G4VPhysicalVolumex) const
{
// Note: copyNo will start with zero!
G4double rmax = fRmaxFirst + copyNo » fRmaxIncr;
trackerChamber.SetInnerRadius (0) ;

trackerChamber.SetOuterRadius (rmax) ;
(continues on next page)

130 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

(continued from previous page)

trackerChamber.SetZHalfLength (fHalfWidth) ;

trackerChamber.SetStartPhiAngle (0. xdeqg) ;

trackerChamber.SetDeltaPhiAngle (360.+deq) ;
}

The user must ensure that the type of the first argument of this method (in this example G4Tubs &) corresponds to
the type of object the user give to the logical volume of parameterised physical volume.
More advanced usage allows the user:

* to change the type of solid by creating a ComputeSolid method, or
* to change the material of the volume by creating a ComputeMaterial method. This method can also utilise
information from a parent or other ancestor volume (see the Nested Parameterisation below.)

for the parameterisation.

Example examples/extended/runAndEvent /RE02 shows a simple parameterisation by material. A more
complex example is provided in examples/extended/medical/DICOM, where a phantom grid of cells is built
using a parameterisation by material defined through a map.

Note: Currently for many cases it is not possible to add daughter volumes to a parameterised volume. Only param-
eterised volumes all of whose solids have the same size are allowed to contain daughter volumes. When the size or
type of solid varies, adding daughters is not supported. So the full power of parameterised volumes can be used only
for “leaf” volumes, which contain no other volumes.

Note: A hierarchy of volumes included in a parameterised volume cannot vary. Therefore, it is not possible to
implement a parameterisation which can modify the hierarchy of volumes included inside a specific parameterised

copy.

Note: For parameterisations of tubes or cons, where the starting Phi and its DeltaPhi angles
vary, it is possible to optimise the regeneration of the trigonometric parameters of the shape, by invoking
SetStartPhiAngle (newPhi, false); SetDeltaPhiAngle (newDPhi), i.e. by specifying with
false flag to skip the computation of the parameters which will be later on properly initialised with the call for
DeltaPhi.

Note: Parameterisations of composed solids like Boolean, Reflected or Displaced solids are not recommended, given
the complexity in handling transformations that this might imply, and limitations in making persistent representations
(i.e. GDML) of the geometry itself.

Note: For multi-threaded applications, one must be careful in the implementation of the parameterisation functions
for the geometrical objects being created in the parameterisation. In particular, when parameterising by the type of a
solid, it is assumed that the solids being parameterised are being declared thread-local in the user’s parameterisation
class and allocated just once.

4.1. Geometry 131

Book For Application Developers, Release 11.0

Advanced parameterisations for ‘nested’ parameterised volumes

A different type of parameterisation enables a user to have the daughter’s material also depend on the copy number
of the parent when a parameterised volume (daughter) is located inside another (parent) repeated volume. The parent
volume can be a replica, a parameterised volume, or a division if the key feature of modifying its contents is utilised.
(Note: a ‘nested’ parameterisation inside a placement volume is not supported, because all copies of a placement
volume must be identical at all levels.)

In such a ” nested” parameterisation , the user must provide a ComputeMaterial method that utilises the new
argument that represents the touchable history of the parent volume:

// Sample Parameterisation
class SampleNestedParameterisation : public G4VNestedParameterisation
{
public:
// .. other methods
// Mandatory method, required and reason for this class
virtual G4Material* ComputeMaterial (G4VPhysicalVolume xcurrentVol,
const G4int no_lev,
const G4VTouchable xparentTouch);
private:
G4Material smateriall, smaterial2;
ti

The implementation of the method can utilise any information from a parent or other ancestor volume of its parame-
terised physical volume, but typically it will use only the copy number:

G4Material~«
SampleNestedParameterisation: :ComputeMaterial (G4VPhysicalVolume *currentVol,
const G4int no_lev,
const G4VTouchable xparentTouchable)

G4Material *material=0;

// Get the information about the parent volume

G4int no_parent= parentTouchable->GetReplicaNumber () ;

G4int no_total= no_parent + no_lev;

// A simple 'checkerboard' pattern of two materials

if(no_total / 2 == 1) material= materiall;

else material= material2;

// Set the material to the current logical volume
G4LogicalVolume* currentLogVol= currentVol->GetLogicalVolume () ;
currentLogVol->SetMaterial (material);

return material;

Nested parameterisations are suitable for the case of regular, ‘voxel’ geometries in which a large number of ‘equal’
volumes are required, and their only difference is in their material. By creating two (or more) levels of parameterised
physical volumes it is possible to divide space, while requiring only limited additional memory for very fine-level
optimisation. This provides fast navigation. Alternative implementations, taking into account the regular structure of
such geometries in navigation are under study.

132 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

Divisions of Volumes

Divisions in GEANT4 are repeated volumes and are implemented as a specialized type of parameterised volumes.

They serve to divide a volume into identical copies along one of its axes, providing the possibility to define an offset,
and without the limitation that the daughters have to fill the mother volume as it is the case for the replicas. In the
case, for example, of a tube divided along its radial axis, the copies are not strictly identical, but have increasing radii,
although their widths are constant.

To divide a volume it will be necessary to provide:

1. the axis of division, and
2. either
¢ the number of divisions (so that the width of each division will be automatically calculated), or
* the division width (so that the number of divisions will be automatically calculated to fill as much of the
mother as possible), or
* both the number of divisions and the division width (this is especially designed for the case where the
copies do not fully fill the mother).

An offset can be defined so that the first copy will start at some distance from the mother wall. The dividing copies
will be then distributed to occupy the rest of the volume.

There are three constructors, corresponding to the three input possibilities described above:
* Giving only the number of divisions:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentlogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double offset)

* Giving only the division width:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentlogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4double width,
const G4double offset)

* Giving the number of divisions and the division width:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentlogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double width,
const G4double offset)

where:

pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother Logical Volume

PAXis The axis along which the division is applied

nDivisions The number of divisions

width The width of a single division along the axis

offset Possible offset associated to the mother along the axis of division

4.1. Geometry 133

Book For Application Developers, Release 11.0

The parameterisation is calculated automatically using the values provided in input. Therefore the di-
mensions of the solid associated with pCurrentLogical will not be used, but recomputed through the
G4VParameterisation: :ComputeDimension () method.

Since G4VPVParameterisation may have different ComputeDimension () methods for each solid type, the
user must provide a solid that is of the same type as of the one associated to the mother volume.

As for any replica, the coordinate system of the divisions is related to the centre of each division for the Cartesian
axis. For the radial axis, the coordinate system is the same of the mother volume. For the phi axis, the new coordinate
system is rotated such that the X axis bisects the angle made by each wedge, and Z remains parallel to the mother’s Z
axis.

As divisions are parameterised volumes with constant dimensions, they may be placed inside other divisions, except
in the case of divisions along the radial axis.

It is also possible to place other volumes inside a volume where a division is placed.

The list of volumes that currently support divisioning and the possible division axis are summarised below:

G4Box kXAxis, kYAxis, kZAxis
G4Tubs kRho, kPhi, kZAxis
G4Cons kRho, kPhi, kZAxis
G4Trd kXAxis, kYAxis, kZAxis
G4Para kXAxis, kYAxis, kZAxis
G4Polycone kRho, kPhi, kZAxis
G4Polyhedra | kRho, kPhi, kZAxis (¥)

(*) - G4Polyhedra:

e kPhi - the number of divisions has to be the same as solid sides, (i.e. numSides), the width will not be taken
into account.

In the case of division along kRho of G4Cons, GAPolycone, G4Polyhedra, if width is provided, it is taken as
the width at the —Z radius; the width at other radii will be scaled to this one.

Examples are given below in listings Listing 4.3 and Listing 4.5.

Listing 4.5: An example of a box division along different axes, with or
without offset.

G4Box* motherSolid = new G4Box ("motherSolid", 0.5xm, 0.5+m, 0.5%m);

G4LogicalVolume* motherLog = new G4LogicalVolume (motherSolid, material, "mother",0,0,0);
G4Parax divSolid = new G4Para ("divSolid", 0.512xm, 1.21xm, 1.43+m);

G4LogicalVolume* childLog = new G4LogicalVolume (divSolid, material, "child",0,0,0);

G4PVDivision divBoxl ("division along X giving nDiv",
childLog, motherLog, kXAxis, 5, 0.);

G4PVDivision divBox2 ("division along X giving width and offset",
childLog, motherLog, kXAxis, 0.lxm, 0.45xm);

G4PVDivision divBox3 ("division along X giving nDiv, width and offset",
childLog, motherLog, kXAxis, 3, 0.lxm, 0.5xm);

* divBoxl1 is a division of a box along its X axis in 5 equal copies. Each copy will have a dimension in meters
of [0.2, 1., 1.].

* divBox2 is a division of the same box along its X axis with a width of 0.1 meters and an offset of 0.5
meters. As the mother dimension along X of 1 meter (0. 5*m of halflength), the division will be sized in total
1 0.45 = 0.55 meters. Therefore, there’s space for 5 copies, the first extending from —0.05to 0.05
meters in the mother’s frame and the last from 0. 35 to 0. 45 meters.

134 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

* divBox3 is a division of the same box along its X axis in 3 equal copies of width 0. 1 meters and an offset of
0.5 meters. The first copy will extend from 0. to 0.1 meters in the mother’s frame and the last from 0. 2 to

0. 3 meters.

Listing 4.6: An example of division of a polycone.

G4doublex zPlanem = new G4double[3];

zPlanem([0]= —1.+m;

zPlanem[1l]= -0.25xm;

zPlanem[2]= 1.xm;
G4double* rInnerm = new G4double[3];

rInnerm[0]=0.

rInnerm[1]=0. l*m,

rInnerm[2]=0.5%m;

1=
II=
]
G4double* rOuterm = new G4double[3];
rOuterm[0]=0.2+%m;
rOuterm([1]=0.4+*m;
rOuterm[2]
G4Polyconex motherSo

=1.x*m;
lid = new G4Polycone ("motherSolid", 20.+deg, 180.=xdeg,
3, zPlanem, rInnerm, rOuterm);

G4LogicalVolume* motherLog = new G4LogicalVolume (motherSolid, material, "mother",0,0,0);

G4doublex zPlaned = new G4double[3];

zPlaned[0]= -3.x*m;
zPlaned[1l]= -0.xm;
zPlaned[2]= 1.xm;

G4double* rInnerd = new G4double[3];
rInnerd[0]=
rInnerd[l]:O 4*m,
rInnerd[2]=0.5%m;

G4double* rOuterd = new G4double[3];
rOuterd[0]=0.5%m;
rOuterd[1]=0.8%*m;
rOuterd([2]=2.+m;

G4Polyconex divSolid = new G4Polycone ("divSolid", 0.xdeg, 10.=xdeg,

3, zPlaned, rInnerd, rOuterd);

G4LogicalVolume+ childLog = new G4LogicalVolume (divSolid, material, "child",0,0,0);

G4PVDivision divPconePhiW("division along phi giving width and offset",
childLog, motherLog, kPhi, 30.xdeg, 60.xdeg);

G4PVDivision divPconeZN ("division along Z giving nDiv and offset",
childLog, motherLog, kZAxis, 2, 0.1lxm);

e divPconePhiW is a division of a polycone along its phi axis in equal copies of width 30 degrees with an
offset of 60 degrees. As the mother extends from O to 180 degrees, there’s space for 4 copies. All the copies
have a starting angle of 20 degrees (as for the mother) and a phi extension of 30 degrees. They are rotated
around the Z axis by 60 and 30 degrees, so that the first copy will extend from 80 to 110 and the last from 170

to 200 degrees.

e divPconeZN is a division of the same polycone along its Z axis. As the mother polycone has two sections, it
will be divided in two one-section polycones, the first one extending from -1 to -0.25 meters, the second from

-0.25 to 1 meters. Although specified, the offset will not be used.

4.1. Geometry

135

Book For Application Developers, Release 11.0

Replicated Slices

A special kind of divided volume is represented by GAReplicatedSlice, a division allowing for gaps inbetween

divided volumes.

Three constructors, corresponding to three input possibilities are provided:

* Giving only the number of divisions:

G4ReplicatedSlice(const G4Strings& pName,

const
const
const
const

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
EAxis pAxis,

G4int nDivisions,

G4double half gap,

G4double offset)

* Giving only the division width:

G4ReplicatedSlice (const G4String& pName,

const
const
const
const

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
EAxis pAxis,

G4double width,

G4double half_ gap,

G4double offset)

* Giving the number of divisions and the division width:

G4ReplicatedSlice (const

const
const
const
const
const

G4Stringé& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
EAxis pAxis,

G4int nDivisions,

G4double width,

G4double half gap,

G4double offset)

where:
pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother Logical Volume
PAXis The axis along which the division is applied
nDivisions The number of divisions
width The width of a single division along the axis
half_gap The half width of the gap to be considered inbetween division slices
offset Possible offset associated to the mother along the axis of division

As for G4PVDivision, the parameterisation is calculated automatically using the values provided in input.

136

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.0

4.1.5 Touchables: Uniquely Identifying a Volume
Introduction to Touchables

A touchable for a volume serves the purpose of providing a unique identification for a detector element. This can
be useful for description of the geometry alternative to the one used by the GEANT4 tracking system, such as a
Sensitive Detectors based read-out geometry, or a parameterised geometry for fast Monte Carlo. In order to create a
touchable volume, several techniques can be implemented: for example, in GEANT4 touchables are implemented as
solids associated to a transformation-matrix in the global reference system, or as a hierarchy of physical volumes up
to the root of the geometrical tree.

A touchable is a geometrical entity (volume or solid) which has a unique placement in a detector description. It is
represented by an abstract base class which can be implemented in a variety of ways. Each way must provide the
capabilities of obtaining the transformation and solid that is described by the touchable.

What can a Touchable do?

All G4VTouchable implementations must respond to the two following “requests”, where in all cases, by depth it
is meant the number of levels up in the tree to be considered (the default and current one is 0):

1. GetTranslation (depth)
2. GetRotation (depth)

that return the components of the volume’s transformation.

Additional capabilities are available from implementations with more information. These have a default implementa-
tion that causes an exception.

Several capabilities are available from touchables with physical volumes:

1. GetSolid (depth) gives the solid associated to the touchable.

2. GetVolume (depth) gives the physical volume.

3. GetReplicaNumber (depth) or GetCopyNumber (depth) which return the copy number of the phys-
ical volume (replicated or not).

Touchables that store volume hierarchy (history) have the whole stack of parent volumes available. Thus it is possible
to add a little more state in order to extend its functionality. We add a “pointer” to a level and a member function to
move the level in this stack. Then calling the above member functions for another level the informa